AMBIO

, Volume 41, Supplement 3, pp 178–186 | Cite as

Environmental Monitoring and Research in the Abisko Area—An Overview

  • Christer Jonasson
  • Mats Sonesson
  • Torben R. Christensen
  • Terry V. Callaghan
Article

Abstract

This article gives an overview of the studies on the environment surrounding the Abisko Scientific Research Station in Swedish Lapland. The long-term monitoring of the Station on processes related to the climate, and to the physical, biotic, and chemical environmental conditions is particularly addressed. Some variables are recorded since more than 100 years. The obtained data in combination with results from short-term studies and manipulation experiments are important to understand past and future conditions of the ecosystems. This has practical applications for the planning of tourism, transports, reindeer herding, and for societal purposes.

Keywords

Monitoring Environmental change Climate change Swedish sub-Arctic Abisko 

References

  1. Åkerman, H.J., and M. Johansson. 2008. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost and Periglacial Processes 19: 279–292.CrossRefGoogle Scholar
  2. André, M.F. 2002. Rates of postglacial rock weathering on glacially scoured outcrops (Abisko-Riksgränsen area 68°N). Geografiska Annaler 84A: 139–150.CrossRefGoogle Scholar
  3. Andrews, C., J. Dick, C. Jonasson, and T.V. Callaghan. 2011. Assessment of biological and environmental phenology at a landscape level from 30 years of fixed date repeat photography in Northern Sweden. In Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project, eds. Callaghan, T.V., and C.E. Tweedie. AMBIO 40: 600–609.Google Scholar
  4. Antonsson, K. 2008. Holocena massrörelser ur ett klimatperspektivEn studie av sjösediment i Lappland. Magisteruppsats i geovetenskap. N-84. Stockholms Universitet (in Swedish).Google Scholar
  5. Bäck, L., and C. Jonasson. 1998. The Kiruna-Narvik road and its impact on the environment and on recreational land use. AMBIO 27: 345–350.Google Scholar
  6. Bäckstrand, K., P.M. Crill, M. Mastepanov, T.R. Christensen, and D. Bastviken. 2008. Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. Journal of Geophysical Research 113: G03026. doi: 10.1029/2008JG000703.CrossRefGoogle Scholar
  7. Bartsch, A., M. Gude, C. Jonasson, and D. Scherer. 2002. Identification of geomorphic process units in Kärkevagge, northern Sweden by remote sensing and digital terrain analysis. Geografiska Annaler 84A: 171–178.CrossRefGoogle Scholar
  8. Beylich, A.A. 2005. Intensity and spacio-temporal variability of chemical denudation in an arctic-oceanic periglacial drainage basin in northernmost Swedish Lapland. Nordic Hydrology 36: 21–36.Google Scholar
  9. Beylich, A.A., and D. Gintz. 2004. Effects of high-magnitude/low-frequency fluvial events generated by intense snowmelt or heavy rainfall in arctic periglacial environments in northern Swedish Lapland and northern Siberia. Geografiska Annaler 86A: 11–29.CrossRefGoogle Scholar
  10. Beylich, A.A., and O. Sandberg. 2005. Geomorphic effects of the extreme rainfall event of 20–21 July, 2004 in the Latnjavagge catchment, northern Swedish Lapland. Geografiska Annaler 87A: 409–419.CrossRefGoogle Scholar
  11. Beylich, A.A., E. Kolstrup, T. Thyrsted, and D. Gintz. 2004a. Water chemistry and its diversity in relation to local factors in the Latnjajaure drainage basin, arctic-oceanic Swedish Lapland. Geomorphology 58: 125–143.CrossRefGoogle Scholar
  12. Beylich, A.A., E. Kolstrup, T. Thyrsted, N. Linde, L.B. Pedersen, and L. Dynesius. 2004b. Chemical denudation in arctic-alpine Latnjajaure (Swedish Lapland) in relation to regolith as assessed by radio magnetotelluric-geophysical profiles. Geomorphology 57: 303–319.CrossRefGoogle Scholar
  13. Beylich, A.A., U. Molau, K. Luthbom, and D. Gintz. 2005. Rates of chemical and mechanical fluvial denudation in an Arctic Oceanic periglacial environment, Latnjavagge drainage basin, northernmost Swedish Lapland. Arctic, Antarctic and Alpine Research 37: 75–87.CrossRefGoogle Scholar
  14. Bull, W.B., P. Schlyter, and S. Brogaard. 1995. Lichenomeric analysis of the Kärkerieppe slush-avalanche fan, Kärkevagge, Sweden. Geografiska Annaler 77A: 231–240.CrossRefGoogle Scholar
  15. Cairns, D.M., and J. Moen. 2004. Herbivory influences tree lines. Journal of Ecology 92: 1019–1024.CrossRefGoogle Scholar
  16. Callaghan, T.V., ed. 2002. Dynamics of the tundra-taiga interface. AMBIO Special Report 12.Google Scholar
  17. Callaghan, T.V., and C.E. Tweedie. 2011. Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project. AMBIO Special Issue 40: 555–716.Google Scholar
  18. Callaghan, T.V., M. Johansson, O.W. Heal, N.R. Sælthun, L.J. Barkved, N. Bayfield, O. Brandt, R. Brooker, et al. 2004. Environmental changes in the North Atlantic region: SCANNET as a collaborative approach for documenting, understanding and predicting changes. AMBIO 13: 39–50.Google Scholar
  19. Callaghan, T.V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 37: L14705. doi: 10.1029/2009GL042064.CrossRefGoogle Scholar
  20. Callaghan, T.V., T.R. Christensen, and E.J. Jantze. 2011. Plant and vegetation dynamics on Disko Island, West Greenland: Snapshots separated by over 40 years. In Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project, eds. Callaghan, T.V., and C.E. Tweedie. AMBIO Special Issue 40: 624–637.Google Scholar
  21. Christensen, T.R., T. Johansson, H.J. Åkerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B.H. Svensson. 2004. Thawing subarctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters 31: L04501.CrossRefGoogle Scholar
  22. Christensen, T.R., T. Johansson, M. Olsrud, L. Ström, A. Lindroth, M. Mastepanov, N. Malmer, T. Friborg, et al. 2007. A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philosophical Transactions of the Royal Society A 365: 1643–1656.CrossRefGoogle Scholar
  23. Christensen, T.R., M. Jackowicz-Korczyński, M. Aurela, P. Crill, M. Heliasz, M. Mastepanov, T. Friborg. 2012. Monitoring the multi-year carbon balance of a subarctic palsa mire with micrometeorological techniques. AMBIO. doi:10.1007/s13280-012-0302-5.
  24. Darmody, R.G., C.E. Thorn, and J.C. Dixon. 2008. Differential rock weathering in the ‘Valley of the Boulders’, Kärkevagge, Swedish Lapland. Geografiska Annaler 90A: 201–209.CrossRefGoogle Scholar
  25. Dixon, J.C., C.E. Thorn, R.G. Darmody, and S.W. Campbell. 2002. Weathering rinds and rock coatings from an Arctic alpine environment, northern Scandinavia. Geological Society of America Bulletin 114: 226–238.CrossRefGoogle Scholar
  26. Dixon, J.C., S.W. Campbell, C.E. Thorn, and R.G. Darmody. 2006. Incipient weathering rind development on introduced machine-polished granite discs in an Arctic alpine environment, northern Scandinavia. Earth Surface Processes and Landforms 31: 111–121.CrossRefGoogle Scholar
  27. Förster, J. 2005. Inventory of Alpine permafrost and palsas in the area of Abisko northern Sweden. Undergraduate Project work. Umeå University. Physical Geography (unpublished manuscript).Google Scholar
  28. Fraser, W.T., M.A. Sephton, J.S. Watson, S. Self, B.H. Lomax, D.I. James, C.H. Wellman, T.V. Callaghan, et al. 2011. UV-B absorbing pigments in spores: Biochemical responses to shade in a Swedish Birch forest. Polar Research 30: 8312. doi: 10.3402/polar.v30i0.8312.CrossRefGoogle Scholar
  29. Friborg, T., T.R. Christensen, and H. Søgaard. 1997. Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. Geophysical Research Letters 24: 3061–3064.CrossRefGoogle Scholar
  30. Fries, T.C.E. 1925. Ökologische und phänologische Beobachtungen bei Abisko in den Jaheren 1917–1919. I. Svenska Växtsociologiska Sällskapets Handlingar 5: 1–171.Google Scholar
  31. Grau, O., J.M. Ninot, J.M. Blanco Morenas, R.S.P. van Logtestijn, J.H.C. Cornelissen, and T.V. Callaghan. 2012. Shrub–tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos. doi: 10.1111/j.1600-0706.2011.2032.x.Google Scholar
  32. Gude, M., and D. Scherer. 1995. Snowmelt and slush torrents—preliminary report from a field campaign in Kärkevagge, Swedish Lappland. Geografiska Annaler 77A: 199–206.CrossRefGoogle Scholar
  33. Gude, M., C. Jonasson, S. Dietrich, and D. Scherer. 2000. Assessment of variability in fluvial sediment transfers in Kärkevagge (N-Sweden) during the last 50 years. Nordic Hydrology 31: 373–384.Google Scholar
  34. Hallinger, M., M. Manthey, and M. Wilmking. 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890–899.CrossRefGoogle Scholar
  35. Hållmarker, M. 2002. Forest line changes in Abisko. MSc Thesis, University of Gothenburg, Gothenburg, Sweden (unpublished manuscript).Google Scholar
  36. Heliasz, M., T. Johansson, A. Lindroth, M. Mölder, M. Mastepanov, T. Friborg, T.V. Callaghan, and T.R. Christensen. 2011. Quantification of C uptake in sub-arctic birch forest after setback by an extreme insect outbreak. Geophysical Research Letters 38: L01704. doi: 10.1029/2010GL044733.CrossRefGoogle Scholar
  37. Holst, T., A. Arneth, S. Hayward, A. Ekberg, M. Mastepanov, M. Jackowicz-Korczynski, T. Friborg, P.M. Crill, et al. 2010. BVOC ecosystem flux measurements at a high latitude wetland site. Atmospheric Chemistry and Physics 10: 1617–1634.CrossRefGoogle Scholar
  38. Høye, T.T., E. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the high-arctic. Current Biology 17: R449–R451.CrossRefGoogle Scholar
  39. Jackowicz-Korczyński, M., T.R. Christensen, K. Bäckstrand, P. Crill, T. Friborg, M. Mastepanov, and L. Ström. 2010. Annual cycle of methane emission from a subarctic peatland. Journal of Geophysical Research Biogeosciences 115: G02009. doi: 10.1029/2008JG000913.CrossRefGoogle Scholar
  40. Jeckel, P. 1988. Permafrost and its altitudinal zonation in N. Lapland. In Fifth International Conference Proceedings on Permafrost, vol. 1, Trondheim: Tapir Publishers, 170–175.Google Scholar
  41. Johansson, M., T.R. Christensen, H.J. Åkerman, and T.V. Callaghan. 2006a. What determines the current presence or absence of permafrost in the Torneträsk Region, a Sub-arctic landscape in Northern Sweden? AMBIO 35: 190–197.CrossRefGoogle Scholar
  42. Johansson, T., N. Malmer, P.M. Crill, T. Friborg, J.H. Åkerman, M. Mastepanov, and T.R. Christensen. 2006b. Decadal vegetation changes in a northern peatland, green-house gas fluxes and net radiation forcing. Global Change Biology 12: 2352–2369.CrossRefGoogle Scholar
  43. Johansson, C., V.A. Pohjola, T.V. Callaghan, and C. Jonasson. 2011a. Changes in snow characteristics in sub-Arctic Sweden. In Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project, eds. Callaghan, T.V., and C.E. Tweedie. AMBIO Special Issue 40: 566–574.Google Scholar
  44. Johansson, M., J. Åkerman, F. Keuper, T.R. Christensen, H. Lantuit, and T.V. Callaghan. 2011b. Redrilling of boreholes: Past and present permafrost temperatures in the Abisko area. In Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project, eds. Callaghan, T.V., and C.E. Tweedie. AMBIO Special Issue 40: 558–565.Google Scholar
  45. Jonasson, C. 1991. Holocene slope processes of periglacial mountain areas in Scandinavia and Poland. UNGI Rapport 79.Google Scholar
  46. Jonasson, C. 1993. Holocene debris flow activity in northern Sweden. Paleoclimate research/Paläoklimaforschung 11: 179–195.Google Scholar
  47. Jonasson, C., and T.V. Callaghan. 2010. Climate change and extreme events in the mountains of northern Sweden. In Europe’s ecological backbone: Recognising the true value of our mountains. European Environment Agency Report No 6. Box 5.1, 76.Google Scholar
  48. Jonasson, C., and R. Nyberg. 1999. The rainstorm of August 1998 in the Abisko area, northern Sweden: Preliminary report on observations of erosion and sediment transport. Geografiska Annaler 81A: 387–390.CrossRefGoogle Scholar
  49. Jonasson, C., M. Gude, and T. Callaghan. 2002. Geomorphological research at the Abisko Scientific Research Station. Geografiska Annaler 84A: 137–138.CrossRefGoogle Scholar
  50. Karlsson, P.S., and M. Weih. 2001. Soil temperatures near the distribution limit of the Mountain Birch (Betula pubescens ssp. czerepanovii): Implications for seedling nitrogen economy and survival. Arctic, Antarctic, and Alpine Research 33: 88–92.CrossRefGoogle Scholar
  51. Karlsson, P.S., H. Bylund, S. Neuvonen, S. Heino, and M. Tjus. 2003. Climatic response of budburst in the mountain birch at two areas in northern Fennoscandia and possible responses to global change. Ecography 26: 617–625.CrossRefGoogle Scholar
  52. Karlsson, J., T.R. Christensen, P. Crill, J. Forster, D. Hammarlund, M. Jackowicz-Korczyński, U. Kokfelt, C. Roehm, et al. 2010. Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment. Journal of Geophysical Research-Biogeosciences 115: G03006. doi: 10.1029/2010JG001305.CrossRefGoogle Scholar
  53. Kausrud, K.L., A. Mysterud, H. Steen, J.O. Vik, E. Østbye, B. Cazelles, E. Framstad, A.M. Eikeset, et al. 2008. Linking climate change to lemming cycles. Nature 456: 93–97.CrossRefGoogle Scholar
  54. King, L. 1984. Permafrost in Skandinavien, Untersuchungsergebnisse aus Lappland, Jotunheimen und Dovre/Rondane. Heidelberger Geographische Arbeiten 76: 1–174.Google Scholar
  55. Kohler, J., O. Brandt, M. Johansson, and T.V. Callaghan. 2006. A long record of arctic snow-depth measurements from Abisko, northern Sweden, 1913–2002. Polar Research 25: 91–113.CrossRefGoogle Scholar
  56. Körner, C., and J. Paulsen. 2004. A world-wide study of high altitude tree-line temperatures. Journal of Biogeography 31: 713–732.CrossRefGoogle Scholar
  57. Kullman, L. 2008. Early postglacial appearance of tree species in northern Scandinavia: Review and perspective. Quaternary Science Reviews 27: 2467–2472.CrossRefGoogle Scholar
  58. Lindfors, A. 2002. Long-term erythermal UV doses at Sodankylä estimated using total ozone, sunshine duration and snow depth. Master’s Thesis in Meteorology. Department of Physics, University of Helsinki, Finland (unpublished manuscript).Google Scholar
  59. Lomax, B., W. Fraser, M. Sephton, T.V. Callaghan, S. Self, M. Harfoot, J. Pyle, C. Wellman, and D. Beerling. 2008. Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geosciences Letters 1: 592–596.CrossRefGoogle Scholar
  60. Lundkvist, M. 1998. Slushflows and other rapid slope processes in Northern Scandinavia—attributes and hazards. Undergraduate Thesis. Uppsala University, Institute of Earth Sciences, Physical Geography (unpublished manuscript).Google Scholar
  61. Lundkvist, M. 2005. Accident risk and environmental assessment: Development of an assessment guideline with examination in northern Sweden. PhD Thesis. Uppsala Universitet. Department of Social and Economic Geography. Geografiska Regionstudier 65.Google Scholar
  62. Malmer, N., T. Johansson, M. Olsrud, and T.R. Christensen. 2005. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Global Change Biology 11: 1895–1909.Google Scholar
  63. Miller, P. and B. Smith, 2012. Modelling tundra vegetation response to recent arctic warming. AMBIO. doi:10.1007/s13280-012-0306-1.
  64. Molau, U., U. Nordenhäll, and B. Eriksen. 2005. Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. American Journal of Botany 92: 422–431.CrossRefGoogle Scholar
  65. Nyberg, R. 1985. Debris flows and slush avalanches in northern Sweden Lappland. Distribution and geomorphological significance. Lund University. Geogr. Inst.—Diss. (unpublished manuscript) XCVII.Google Scholar
  66. Nyberg, R., and A. Rapp. 1998. Extreme erosional events and natural hazards in Scandinavian mountains. AMBIO 27: 292–299.Google Scholar
  67. Olefeldt, D., and N.T. Roulet. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. Journal of Geophysical Research-Biogeosciences 117: G01005. doi: 10.1029/2011JG001819.CrossRefGoogle Scholar
  68. Olefeldt, D., N.T. Roulet, O. Bergeron, P. Crill, K. Bäckstrand, and T.R. Christensen. 2012. Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophysical Research Letters 39: L03501. doi: 10.1029/2011GL050355.CrossRefGoogle Scholar
  69. Post, E., M. Forchhammer, N.C. Stenseth, and T.V. Callaghan. 2001. The timing of life history events in a changing climate. Proceedings of the Royal Society London Series B 268: 15–23.CrossRefGoogle Scholar
  70. Ridefelt, H., and J. Boelhouwers. 2006. Observations on regional variation in solifluction landform morphology and environment in the Abisko region, northern Sweden. Permafrost and Periglacial Processes 17: 253–266.CrossRefGoogle Scholar
  71. Ridefelt, H., B. Etzelmüller, J. Boelhouwers, and C. Jonasson. 2008. Statistic-empirical modelling of mountain permafrost distribution in the Abisko region, sub-Arctic northern Sweden. Norsk Geografisk Tidskrift 62: 278–289.CrossRefGoogle Scholar
  72. Ridefelt, H., J. Åkerman, A.A. Beylich, J. Boelhouwers, E. Kolstrup, and R. Nyberg. 2009. 56 years of solifluction measurements in the Abisko Mountains, northern Sweden—analysis of temporal and spatial variations of slow surface movements. Geografiska Annaler 91A: 215–232.CrossRefGoogle Scholar
  73. Ridefelt, H., B. Etzelmüller, and J. Boelhouwers. 2010. Spatial analysis of solifluction landforms and process rates in the Abisko mountains, northern Sweden. Permafrost and Periglacial Processes 21: 241–255.CrossRefGoogle Scholar
  74. Riseth, J.Å., H. Tømmervik, E. Helander-Renvall, V. Pohjola, N.T. Labba, N. Labba, E.A. Niia, H. Kuhmunen, et al. 2010. “Snow and Ice” Sami TEK and Science in concert for understanding climate change effects on reindeer pasturing. Polar Record 47: 202–217.CrossRefGoogle Scholar
  75. Rubensdotter, L., and G. Rosqvist. 2003. The effect of geomorphological setting on Holocene lake sediment variability, northern Swedish Lapland. Journal of Quaternary Science 18: 757–767.CrossRefGoogle Scholar
  76. Rundqvist, S., H. Hedenås, A. Sandström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub layer expansion over the past 34 years at the tree-line in Abisko, sub-Arctic. In Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project, eds. Callaghan, T.V., and C.E. Tweedie. AMBIO Special Issue 40: 683–692.Google Scholar
  77. Sonesson, M. 1974. Late quaternary forest development of the Torneträsk area, North Sweden, 2. Pollen analytical evidence. Oikos 25: 288–307.CrossRefGoogle Scholar
  78. Sonesson, M. 1979. Fennoscandian tree-line conference. Holarctic Ecology 2: 201–283.Google Scholar
  79. Sonesson, M., and J. Hoogesteger. 1983. Recent tree-line dynamics (Betula pubescens Ehrh. ssp. tortuosa (Ledeb.) Nyman in northern Sweden. Nordicana 47: 47–54.Google Scholar
  80. Sonesson, M., and Lilliesköld, M. 2000. Fjällens ekosystem i ett förändrat klimat. Naturvårdsverket, Rapport 5085.Google Scholar
  81. Strömquist, L. 1985. Geomorphic impact of snowmelt on slope erosion and sediment production. Zeitschrift für Geomorphologie 29: 129–138.Google Scholar
  82. Sveinbjörnsson, B., A. Hofgaard, and A.H. Lloyd. 2002. Natural causes of the tundra–taiga boundary. AMBIO 12: 23–29.Google Scholar
  83. Theuring, P.C. 2007. GIS-based modelling of geomorphic activity in the Kårsavagge Valley—Northern Sweden. Diplomarbeit. Chemisch-Geowissenschaftlichen Fakultät des Fachbereiches Geographie der Friedrich-Schiller-Universität Jena (unpublished manuscript).Google Scholar
  84. Thorn, C.E., J.C. Dixon, R.G. Darmody, and C.E. Allen. 2006. A 10-year record of the weathering rates of surficial pebbles in Kärkevagge, Swedish Lapland. Catena 65: 272–278.CrossRefGoogle Scholar
  85. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2010. Range expansion of thermophilic aspen (Populus tremula L.) in the Swedish Subarctic. Arctic, Antarctic, and Alpine Research 42: 362–375.CrossRefGoogle Scholar
  86. Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden show local and regional variability and only a minor role of 20th century climate warming. Journal of Biogeography 38: 907–921.CrossRefGoogle Scholar
  87. Wik, M., P.M. Crill, D. Bastviken, A. Danielsson, and E. Norback. 2012. Bubbles trapped in arctic lake ice: Potential implications for methane emissions. Journal of Geophysical Research-Biogeosciences 116: G03044. doi: 10.1029/2011JG001761.CrossRefGoogle Scholar
  88. Zhenlin, Y., E. Hanna, and T.V. Callaghan. 2011. Modelling surface-air-temperature variation over complex terrain around Abisko, Swedish Lapland: Uncertainties of measurements and models at different scales. Geografiska Annaler: Series A, Physical Geography 93: 89–112.CrossRefGoogle Scholar
  89. Zhenlin, Y., E. Hanna, T.V. Callaghan, and C. Jonasson. 2012. How can meteorological observations and microclimate simulations improve understanding of 1913–2010 climate change around Abisko, Swedish Lapland? Meteorological Applications 18. doi:  10.1002/met.276.

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Christer Jonasson
    • 1
    • 2
  • Mats Sonesson
    • 3
  • Torben R. Christensen
    • 4
  • Terry V. Callaghan
    • 1
    • 5
  1. 1.Royal Swedish Academy of SciencesStockholmSweden
  2. 2.Abisko Scientific Research StationSwedish Polar SecretariatAbiskoSweden
  3. 3.Harald Blåtands Gränd 13LundSweden
  4. 4.Department of Earth and Ecosystem Sciences, Division of Physical Geography and Ecosystem AnalysesLund UniversityLundSweden
  5. 5.Department of Plant and Animal Sciences, Sheffield Centre for Arctic EcologyUniversity of SheffieldSheffieldUK

Personalised recommendations