, Volume 40, Issue 8, pp 891–905 | Cite as

Assessment of Uncertainty in Long-Term Mass Balances for Acidification Assessments: A MAGIC Model Exercise

  • S. J. Köhler
  • T. Zetterberg
  • M. N. Futter
  • J. Fölster
  • S. Löfgren


Long-term (1860–2010) catchment mass balance calculations rely on models and assumptions which are sources of uncertainty in acidification assessments. In this article, we report on an application of MAGIC to model acidification at the four Swedish IM forested catchments that have been subject to differing degrees of acidification stress. Uncertainties in the modeled mass balances were mainly associated with the deposition scenario and assumptions about sulfate adsorption and soil mass. Estimated base cation (BC) release rates (weathering) varied in a relatively narrow range of 47–62 or 42–47 meq m−2 year−1, depending on assumptions made about soil cation exchange capacity and base saturation. By varying aluminum solubility or introducing a dynamic weathering feedback that allowed BC release to increase at more acidic pHs, a systematic effect on predicted changes in acid neutralizing capacity (ΔANC ca. 10–41 μeq l−1) and pH (ca. ΔpH = 0.1–0.6) at all sites was observed. More robust projections of future changes in pH and ANC are dependent on reducing uncertainties in BC release rates, the timing, and extent of natural acidification through BC uptake by plants, temporal changes in soil element pools, and fluxes of Al between compartments.


MAGIC Weathering Modeling Base cations Aluminum Acidification 



The Swedish IM program has been funded by the Swedish Environmental Protection Agency since the program was initiated. None of the findings would have possible without access to high quality long-term data series. Therefore, the authors would like to dedicate this article to the large number of people involved in establishing, sampling, and analyzing data at the four Swedish IM sites. MNF was funded by the MISTRA Future Forests program.


  1. Aherne, J., R.C. Helliwell, A. Lilly, R.C. Ferrier, and A. Jenkins. 2007. Simulation of soil and surface water acidification: divergence between one box and two-box models? Applied Geochemisty 22: 1167–1173.CrossRefGoogle Scholar
  2. Akselsson, C., O. Westling, H. Sverdrup, and P. Gundersen. 2007. Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. Forest Ecology and Management 238: 167–174.CrossRefGoogle Scholar
  3. Anon. 2008. Historic deposition data for the EMAP 50*50 km Grid. Coordination Centre for Effects, Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands.Google Scholar
  4. Bastviken, D., P. Sandén, T. Svensson, C. Ståhlberg, M. Magounakis, and G. Öberg. 2006. Chloride-retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads. Environmental Science and Technology 40: 2977–2982.CrossRefGoogle Scholar
  5. Berner, R.A. 1967. Comparative dissolution characteristics of carbonate minerals in the presence and absence of aqueous magnesium ions. American Journal of Science 265: 45–70.CrossRefGoogle Scholar
  6. Cosby, B.J., G.M. Hornberger, J.N. Galloway, and R.F. Wright. 1985a. Modeling the effects of acid deposition–assessment of a lumped parameter model of soil-water and streamwater chemistry. Water Resources Research 21: 51–63.CrossRefGoogle Scholar
  7. Cosby, B.J., R.F. Wright, and E. Gjessing. 1985b. An acidification model (MAGIC) with organic acids evaluated using whole- catchment manipulations in Norway. Journal of Hydrology 170: 101–122.CrossRefGoogle Scholar
  8. Cosby, B.J., R.C, Ferrier, A. Jenkins, and R.F. Wright. 2001. Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences 5: 499–517.CrossRefGoogle Scholar
  9. Ferm, M., and H. Hultberg. 1995. Method to estimate atmospheric deposition of base cations in coniferous throughfall. Water, Air, and Soil pollution 85: 229–2234.CrossRefGoogle Scholar
  10. Ferm, M., and H. Hultberg. 1999. Dry deposition and internal circulation of nitrogen, sulphur and base cations to a conifer forest. Atmospheric Environment 33: 4421–4430.CrossRefGoogle Scholar
  11. Fölster, J., C. Andrén, K. Bishop, I. Buffam, N. Cory, W. Goedkoop, K. Holmgren, R. Johnson, et al. 2007. A novel environmental quality criterion for acidification in Swedish lakes–an application of studies on the relationship between biota and water chemistry. Water, Air, and Soil pollution 7: 331–338.CrossRefGoogle Scholar
  12. Forsius, M., M. Alveteg, A. Jenkins, M. Johansson, S. Kleemola, A. Lükewille, M. Posch, H. Sverdrup, et al. 1998. MAGIC, SAFE and SMART model application at integrated monitoring site: effects of emission reduction scenarios. Water, Air, and Soil pollution 105: 21–30.CrossRefGoogle Scholar
  13. Granat, L. 1988. Luft- och nederbördskemiska stationsnätet inom PMK. Rapport från verksamheten 1988. Rapport no 3649. Stockholm (in Swedish, English summary).Google Scholar
  14. Grimvall, A. 2004. FLOWNORM 2.0–A visual basic program for computing riverine loads of substances and extracting anthropogenic signals from time series of load data. Linköping: Department of Mathematics, Linköping University.Google Scholar
  15. Hellsten, S., and O. Westling. 2006. Försurande och övergödande nedfall i skog. Delprogram Krondropp inom programområdet luft. Sakrapport 2006-06-01 för naturvårdsverket, IVL, Göteborg (in Swedish, English summary).Google Scholar
  16. Hodson, M.E., and S.J. Langan. 1999. Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rete determination. Environmental Pollution 106: 73–81.CrossRefGoogle Scholar
  17. Hruska, J., S. Köhler, H. Laudon, and K. Bishop. 2003. Is a universal model of organic acidity possible: Comparison of acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Sciences & Technology 37: 1726–1730.CrossRefGoogle Scholar
  18. Jenkins, A., T. Larssen, F. Moldan, J. Hruska, P. Kram, and S. Kleemola. 2003. Dynamic modelling at integrating monitoring sites—model tested against observations and uncertainty. Helsinki: Finnish Environment Institute.Google Scholar
  19. Grandin, U. 2011a. Epiphytic algae and lichen cover in boreal forests—a long-term study along a N and S deposition gradient in Sweden. AMBIO. doi: 10.1007/s13280-011-0205-x.
  20. Grandin, U. 2011b. Understorey vegetation stability and dynamics in unmanaged boreal forests along a deposition gradient in Sweden. AMBIO. doi: 10.1007/s13280-011-0206-9.
  21. Klaminder, J., R.W. Lucas, M.N. Futter, K.H. Bishop, S.J. Köhler, G. Egnell, and H. Laudon. 2011. Silicate mineral weathering rate estimates: are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting? Forest Ecology and Management 261: 1–9.CrossRefGoogle Scholar
  22. Kram, P., K. Bishop, and F. Moldan. 2001. Modeling long-term streamwater chemistry in the Berg catchment, southwestern Sweden. Paper presented at the Nordic hydrological conference (Uppsala, Sweden, June 2000), vol. 32, 249–264.Google Scholar
  23. Köhler, S.J., F. Dufaud, and E.H. Oelkers. 2003. An experimental study of Illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochimica et Cosmochimica Acta 67: 3583–3594.CrossRefGoogle Scholar
  24. Laudon, H., J. Hruska, S. Köhler, and P. Kram. 2005. Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech republic. Environmental Science and Technology 39: 3197–3202.CrossRefGoogle Scholar
  25. Lind, B.B., and L. Lundin. 1990. Saturated hydrological conductivity Scandinavian tills. Nordic Hydrology 21: 107–118.Google Scholar
  26. Löfgren, S., L. Bringmark, M. Aastrup, H. Hultberg, K. Kindbom, and H. Kvarnäs. 2001. Sulphur balances and dynamics in three forested catchments in Sweden. Water, Air, and Soil pollution 130: 632–636.Google Scholar
  27. Löfgren, S., and N. Cory. 2010. Groundwater Al dynamics in boreal hillslopes at three integrated monitoring sites along a sulphur deposition gradient in Sweden. Journal of Hydrology 380: 289–297.CrossRefGoogle Scholar
  28. Löfgren, S., M. Aastrup, L. Bringmark, H. Hultberg, L. Lewin-Pihlblad, L. Lundin, G.P. Karlsson, and B. Thunholm. 2011. Recovery of soil water, groundwater and streamwater from acidification at the Swedish Integrated Monitoring catchments. AMBIO. doi: 10.1007/s13280-011-0207-8.
  29. Lövblad, G., C. Persson, and E. Roos. 2000. Deposition of base cations in Sweden. Swedish Environmental Protection Agence report 5119, Stockholm.Google Scholar
  30. Martinson, L., M. Alveteg, and P. Warfvinge. 2003. Parameterization and evaluation of sulfate adsorption in dynamic soil chemistry model. Environmental Pollution 124: 119–125.CrossRefGoogle Scholar
  31. Moldan, F., V. Kronnäs, A. Wilander, E. Karltun, and B.J. Cosby. 2004. Modelling acidification and recovery of Swedish lakes. Water, Air, and Soil Pollution, Focus 4: 139–160.CrossRefGoogle Scholar
  32. Monteith, D.T., J.L. Stoddard, C.D. Evans, H.A. de Wit, M. Forsius, T. Hogasen, A. Wilander, B.L. Skjelkvale, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540.CrossRefGoogle Scholar
  33. Mörth, C.M., P. Torssander, and H. Kusakabe. 1999. Sulfur isotope values in a forested catchment over four years: Evidence for oxidation and reduction processes. Biogeochemistry 44: 51–71.Google Scholar
  34. Mosello, R., M. Amoriello, T. Amoriello, S. Arisci, A. Carcano, N. Clarke, J. Derome, K. Derome, et al. 2005. Validation of chemical analysis of atmospheric deposition in forested European sites. Journal of Limnology 64: 93–102.CrossRefGoogle Scholar
  35. Oelkers, E.H. 2001. General kinetic description of multioxide silicate minerals and glass dissolution. Geochimica et Cosmochimica Acta 65: 3703–3719.CrossRefGoogle Scholar
  36. Parkhurst, D. 1998. PHREEQC (Version2)—A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations.
  37. Persson, C., M. Ferm, and O. Westling. 2004. Förbättrad mätning och beräkning av belastningen av försurande och övergödande luftföroreningar. Specialprojekt på uppdrag av Naturvårdsverkets miljöövervakningsenhet, SMHI och IVL. Göteborg (in Swedish).Google Scholar
  38. Rhode, A. 2003. Flow paths of waters in Swedish forests. Kungliga Skogs—och Lantbruksakademiens Tidskrift 142: 23–29.Google Scholar
  39. Schott, J., R.A. Berner, and E.L. Sjoberg. 1981. Mechanism of pyroxene and amphibole weathering–I. Experimental studies of iron free minerals. Geochimica et Cosmochimica Acta 45: 2123–2135.CrossRefGoogle Scholar
  40. Sjöstedt, C.S., J.P. Gustafsson, and S.J. Köhler. 2010. Chemical equilibrium modeling of organic acid, pH, aluminum, and iron in Swedish surface waters. Environmental Science and Technology 44: 8587–8593.CrossRefGoogle Scholar
  41. Sverdrup, H. U. Johnson & Felming. 1942. The Oceans. In Handbook of chemistry and physics, ed. R.C. Weast. Cleveland: Prentice Hall.Google Scholar
  42. Sverdrup, H. 2009. Chemical weathering of soil minerals and the role of biological processes. Fungal Biology Reviews 23: 94–100.CrossRefGoogle Scholar
  43. Thimonier, A., M. Schmitt, P. Waldner, and P. Schleppi. 2008. Seasonality of the Na/Cl ratio in precipitation and implications of canopy leaching in validating chemical analyses of throughfall samples. Atmospheric Environment 42: 9106–9117.CrossRefGoogle Scholar
  44. Ulrich, B. 1983. Interaction of forest canopies with atmospheric constituents: CO2, alkali and earth alkali cations and chloride. In Effects of accumulation of air pollutants in Forest Ecosystems, ed. B. Ulrich and J. Pankrath, 13. Boston: Reidel.Google Scholar
  45. Viers, J., B. Dupre, J.-J. Braun, R. Freydier, S. Greenberg, J. Ngoupayou, and L. Nkamdjou. 2001. Evidence for non-conservative behavior of chlorine in humid tropical environment. Aquatic Geochemistry 7: 127–154.CrossRefGoogle Scholar
  46. Whitehead, P.G., B. Reynolds, M. Hornung, C. Neal, J. Cosby, and P. Paricos. 1988. Modeling long-term stream acidification trends in upland Wales at Plynlimon. Hydrological Processes 2: 357–368.CrossRefGoogle Scholar
  47. Whitfield, C.J., S.A. Watmough, S.A. Aherne, and P.J. Dillion. 2006. A comparison of weathering rates for acid-sensitive catchments in Nova Scotia, Canada and their impact on critical load calculations. Geoderma 136: 899–911.CrossRefGoogle Scholar
  48. Whitfield, C.J., J. Aherne, P.J. Dillon, and S.A. Watmough. 2007. Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada. Hydrology and Earth Systems Sciences 11: 951–963.CrossRefGoogle Scholar
  49. Whitfield, C.J., J. Aherne, B.J. Cosby, and S.A. Watmough. 2011. Modelling boreal lake catchment response to anthropogenic acid deposition. Journal of Limnology 69(suppl. 1): 135–146.Google Scholar
  50. Wieland, E., B. Wehrli, and W. Stumm. 1988. The coordination chemistry of weathering: III. A potential generalization on dissolution rated of minerals. Geochimica et Cosmochimica Acta 52: 1969–1981.Google Scholar
  51. Wright, R.F., B.J. Cosby, R.C. Ferrier, A. Jenkins, A.J. Bulger, and R. Harriman. 1994. Changes in acidification of lochs in Galloway, Southwestern Scotland, 1979–1988: the Magic model used to evaluate the role of afforestation, calculate critical loads, and predict fish status. Journal of Hydrology 161: 257–285.CrossRefGoogle Scholar
  52. Wright, R.F., and B.J. Cosby. 2003. Future recovery of acidified lakes in southern Norway predicted by the MAGIC model. Hydrology and Earth System Sciences 7: 467–483.CrossRefGoogle Scholar
  53. Wright, R.F., and B.J. Cosby. 2004. Recovery of acidified mountain lakes in Norway as predicted by the MAGIC model. Journal of Limnology 63: 101–110.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • S. J. Köhler
    • 1
  • T. Zetterberg
    • 1
    • 2
  • M. N. Futter
    • 1
  • J. Fölster
    • 1
  • S. Löfgren
    • 1
  1. 1.Department of Aquatic Sciences and AssessmentSLUUppsalaSweden
  2. 2.IVL Svenska Miljöinstitutet ABStockholmSweden

Personalised recommendations