, Volume 41, Issue 3, pp 262–270 | Cite as

Bio-Ethanol Production from Non-Food Parts of Cassava (Manihot esculenta Crantz)

  • Ephraim Nuwamanya
  • Linley Chiwona-Karltun
  • Robert S. Kawuki
  • Yona Baguma


Global climate issues and a looming energy crisis put agriculture under pressure in Sub-Saharan Africa. Climate adaptation measures must entail sustainable development benefits, and growing crops for food as well as energy may be a solution, removing people from hunger and poverty without compromising the environment. The present study investigated the feasibility of using non-food parts of cassava for energy production and the promising results revealed that at least 28% of peels and stems comprise dry matter, and 10 g feedstock yields >8.5 g sugar, which in turn produced >60% ethanol, with pH ≈ 2.85, 74–84% light transmittance and a conductivity of 368 mV, indicating a potential use of cassava feedstock for ethanol production. Thus, harnessing cassava for food as well as ethanol production is deemed feasible. Such a system would, however, require supportive policies to acquire a balance between food security and fuel.


Cassava feedstock Food security Energy production Bio-ethanol 



The present study was financed by SIDA through the BIO-EARN program. We thank Dr Anton Bua of the Cassava Program, National Crops Resources Research Institute (NaCRRI) for providing the test material and associated logistics. The assistance of members of the NaCRRI biosciences laboratory, especially the biochemistry section, is gratefully acknowledged.


  1. Adesanya, O., K. Oluyemi, S. Josiah, R. Adesanya, L. Shittu, D. Ofusori, M. Bankole, and G. Babalola. 2008. Ethanol production by Saccharomyces Cerevisiae from Cassava Peel Hydrolysate. Internet Journal of Microbiology 5: 1.Google Scholar
  2. Agbogbo, F., and K. Wenger. 2007. Production of ethanol from corn stover hemicellulose-hydrolysate using Pichiastipis. Journal of Industrial Microbiology & Biotechnology 34: 723–727.CrossRefGoogle Scholar
  3. Ahamefule, F.O. 2005. Evaluation of pigeon pea-cassava peel based diets for goat production in South-Eastern Nigeria. Ph.D. Thesis, Michael Okpara University of Agriculture, Umudike.Google Scholar
  4. Akpan, I., N. Uraih, C.O. Obuekwe, and M.J. Ikenebomeh. 2004. Production of ethanol from cassava whey. Acta Biotechnologica 8: 39–45.CrossRefGoogle Scholar
  5. Amigun, B., R. Sigamoney, and H. von Blottnitz. 2008. Commercialisation of biofuel industry in Africa: A review. Renewable and Sustainable Energy Reviews 12: 690–711.CrossRefGoogle Scholar
  6. Ballesteros, I., J.M. Oliva, A. Navarro, J. Carrasco, and M. Ballesteros. 2000. Effect of chip size on steam explosion pretreatment of softwood. Applied Biochemistry and Biotechnology 84–86: 97–110.Google Scholar
  7. Boonnop, K., M. Wanapat, N. Nontaso, and S. Wanapat. 2009. Enriching nutritive value of cassava root by yeast fermentation. Scientia Agricola (Piracicaba, Braz.) 66: 616–620.Google Scholar
  8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefGoogle Scholar
  9. Brauman, A.S., S. Ke′le′ke, M. Malonga, E. Miambi, and F. Ampe. 1996. Microbiological and biochemical characterization of Cassava Retting a traditional lactic acid fermentation for Foo–Foo (Cassava flour). Production Applied and Environmental Microbiology 62: 2854–2858.Google Scholar
  10. Chandel, A., E. Chan, R. Rudravaram, L. Narasu, V. Rao, and P. Ravindra. 2007. Economics and environmental impact of bio-ethanol production technologies: An appraisal. Biotechnology and Molecular Biology Review 2(1): 014–032.Google Scholar
  11. Chiwona-Karltun, L., J. Mkumbira, J. Saka, M. Bovin, N.M. Mahungu, and H. Rosling. 1998. The importance of being bitter—a qualitative study on cassava cultivar preference in Malawi. Ecology of Food and Nutrition 37(3): 219–245.CrossRefGoogle Scholar
  12. de Oliveira, M.F., A.A. Saczk, L.L. Okumura, and N.R. Stradiotto. 2009. Analytical methods employed at quality control of fuel ethanol. Energy Fuels 23: 4852–4859.Google Scholar
  13. Dixon, A.G.O., J.M. Ngeve, and E.N. Nukenine. 2002. Response of Cassava genotypes to four biotic constraints in three agro-ecologies of Nigeria. African Crop Science Journal 10: 11–21.CrossRefGoogle Scholar
  14. Dubois, M., K. Gilles, K. Hamilton, A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.Google Scholar
  15. Endo, A., T. Nakamura, A. Ando, K. Tokuyasu, and J. Shima. 2008. Genome-wide screening of the genes required for tolerance to Vanillin, which is a potential inhibitor of bio-ethanol fermentation, in Saccharomyces cerevisiae. Biotechnology for Biofuels 1: 3.CrossRefGoogle Scholar
  16. Fabro, M.A., H.V. Milanesio, L.M. Robert, J.L. Speranza, M. Murphy, G. Rodríguez, and R. Castañeda. 2006. Determination of acidity in whole raw milk. Journal of Dairy Science 89: 859–861.Google Scholar
  17. FAO. 2005–2008. FAOSTAT statistics database-agriculture production statistics. Rome, Italy: FAO. Retrieved 25 June 2010.
  18. Fermont, A.M., J.A. van Asten, and K.E. Giller. 2008. Increasing land pressure in East Africa: The changing role of cassava and consequences for sustainability of farming systems. Agriculture, Ecosystems & Environment 128: 239–250.CrossRefGoogle Scholar
  19. Gryta, M., A. Waldemar, and Tomaszewska M. Morawski. 2000. Ethanol production in membrane distillation bioreactor. Catalysis Today 56: 159–165.CrossRefGoogle Scholar
  20. Guo, A., B. Webb, M. Miles, M. Zimmerman, K. Kendler, and Z. Zhao. 2008. ERGR: An ethanol related gene resource. Nucleic Acid Research 37(1): D840–D845.Google Scholar
  21. Hall, J., S. Matos, L. Severino, and N. Beltrão. 2009. Brazilian biofuels and social exclusion: Established and concentrated ethanol versus emerging and dispersed biodiesel. Journal of Cleaner Production 17(Suppl. 1): S77–S85.CrossRefGoogle Scholar
  22. Hayes, F.W. (1982). Production of ethanol from sugar cane (435/161 ed.). England. Retrieved 4 Oct 2011.
  23. Klinke, H.B., A.B. Thomsen, and B.K. Ahring. 2004. Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology 66: 10–26.CrossRefGoogle Scholar
  24. Kosugi, A., A. Kondo, M. Ueda, Y. Murata, P. Vaithanomsat, W. Thanapase, T. Arai, and T. Mori. 2009. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy 34: 1354–1358.CrossRefGoogle Scholar
  25. Kristensen, J., L. Thygesen, C. Felby, H. Jørgensen, and T. Elder. 2008. Cell-wall structural changes in wheat straw pre-treated for bioethanol production. Biotechnology for Biofuels 1: 29–32.CrossRefGoogle Scholar
  26. Londo, M., E. Deurwaarder, G. Fischer, S. Prieler, H. van Velthuizen, M. de Wit, A. Faaij, et al. 2010. A roadmap for biofuels in Europe. Biomass and Bioenergy 34: 244–250.CrossRefGoogle Scholar
  27. Marshall, L., and Z. Sugg. 2009. Corn stover for ethanol production, WRI policy notes, January 2009. No. 4: 1–10.
  28. Mosier, N., C. Wyman, B.E. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673–686.CrossRefGoogle Scholar
  29. Nuwamanya, E., Y. Baguma, N. Emmambux, J. Taylor, and P. Rubaihayo. 2010. Physicochemical and functional characteristics of cassava starch in Ugandan varieties and their progenies. Journal of Plant Breeding and Crop Science 2: 001–011.Google Scholar
  30. Patle, S., and B. Lal. 2009. Ethanol production from hydrolyzed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnology Letters 29: 1839–1843.CrossRefGoogle Scholar
  31. Pattiya, A., J. Titiloye, and A. Bridgewater. 2007. Fast pyrolysis of agricultural residues from cassava plantations for bio-oil production. Asian Journal on Energy and Environment 08: 496–502.Google Scholar
  32. Rist, L., J. Ser, H. Lee, and L. Pin Koh. 2009. Biofuels: Social benefits. Science 326: 1344-a.Google Scholar
  33. Sassner, P., M. Galbe, and G. Zacchi. 2006. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology 39: 756–762.Google Scholar
  34. Teixeira, L., T. Chaves, P. Guimarães, L. Pontes, and J. Teixeira. 2009. Indirect determination of chloride and sulfate ions in ethanol fuel by X-ray fluorescence after a precipitation procedure. Analytica Chimica Acta 640: 29–32.CrossRefGoogle Scholar
  35. Tillman, D., R. Socolow, J.A. Foley, D. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. Searchinger, C. Somerville, and R. Williams. 2009. Beneficial biofuels, the food, energy and environment trilemma. Science 325: 270–271.Google Scholar
  36. Toran-Diaz, I., V.K. Jain, J.-J. Allais, and J. Baratti. 2009. Effect of acid or enzymatic hydrolysis on ethanol production by Zymomonas mobilis growing on Jerusalem artichoke juice. Biotechnology Letters 17: 527–530.Google Scholar
  37. Van Dijken, J.P., R.A. Westhuis, and J.T. Pronk. 1993. Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63: 343–352.CrossRefGoogle Scholar
  38. Van Hoek, P., J. Van Dijken, and J. Pronk. 1998. Effect of specific growth rate on fermentative capacity of baker’s yeast. Applied Environmental Microbiology 64: 4226–4233.Google Scholar
  39. Wang, D., S. Bean, J. McLaren, P. Seib, Y. Shi, M. Lenz, X. Wu, and R. Zhao. 2008. Grain sorghum is a viable feedstock for ethanol production. Journal of Industrial Microbiology Biotechnology 35: 313–320.CrossRefGoogle Scholar
  40. Wu, X., R. Zhao, D. Wang, S. Bean, P. Seib, M. Tuinstra, M. Campbell, and A. Obrien. 2006. Effects of amylose, corn protein and corn fiber contents on production of ethanol from starch rich media. Cereal Chemistry 83: 569–575.CrossRefGoogle Scholar
  41. Yoonan, K., and J. Kongkiattikajorn. 2005. A study of optimal conditions for reducing sugars production from cassava peels by diluted acid and enzymes. Kasetsart Journal of Natural Science 38: 29–35.Google Scholar
  42. Yu, J., X. Zhang, and T. Tan. 2007. A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal of Biotechnology 129: 415–420.Google Scholar
  43. Ziska, L., G. Runion, M. Tomecek, S. Prior, A. Torbet, and R. Sicher. 2009. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bio-ethanol production in Alabama and Maryland. Biomass and Bioenergy 33: 1503–1508.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  1. 1.National Agricultural Research organization, National Crops Resources Research Institute (NaCRRI)KampalaUganda
  2. 2.Department of Urban and Rural DevelopmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations