Advertisement

AMBIO

, Volume 41, Issue 2, pp 151–160 | Cite as

Does Divergence of Nutrient Load Measurements Matter for Successful Mitigation of Marine Eutrophication?

  • Ing-Marie Gren
  • Georgia Destouni
Report

Abstract

Successful implementation of an international nutrient abatement agreement, such as the Baltic Sea Action Plan (BSAP), requires consistent understanding of the baseline nutrient loads, and a perception of acceptable costs and fairness in targeted reductions of these base line loads. This article presents a general framework for identifying the implications of divergence between different nutrient load quantification approaches, with regard to both cost and fairness criteria outcomes, for the international agreement to decrease nutrient loads into the Baltic Sea as presented in the BSAP. The results indicate that even relatively small divergence in the nutrient load quantification translates into relatively large differences in abatement cost for different Baltic Sea countries. A robust result, irrespective of differences in nutrient load assessments, is a conflict between abatement cost effectiveness and fairness, with relatively poor countries facing heavy abatement cost burdens for cost-effective international load abatement.

Keywords

Nutrient measurement divergences Eutrophication Cost effectiveness Fairness Baltic Sea 

Notes

Acknowledgement

Destouni acknowledges support from Stockholm University’s Strategic Marine Environmental Research Funds through the BEAM Program.

References

  1. The World Bank. 2011. Data catalogue. http://data.worldbank.org/data-catalog. Accessed 20 Jan 2011.
  2. Backer, H., and J.M. Leppänen. 2008. The Helcom system of a vision, strategic goals and ecological objectives: implementing an ecosystem approach to the management of human activities in the Baltic Sea. Marine Freshwater Ecosystem 18: 224–321.Google Scholar
  3. BalticSea2020. 2011. http://www.balticsea2020.org/english/. Accessed 30 April 2011.
  4. Baresel, C., and Destouni, G. 2005. Novel quantification of coupled natural and cross-sectoral water and nutrient/pollutant flows for environmental management. Environmental Science & Technology 39(16):6182–6190. doi: 10.1021/es050522k.
  5. Baresel, C., and G. Destouni. 2007. Uncertainty-accounting environmental policy and management of water systems. Environmental Science and Technology 41(10): 3653–3659. doi: 10.1021/es061515e.CrossRefGoogle Scholar
  6. Baresel, C., G. Destouni, and I.-M. Gren. 2006. The influence of metal source uncertainty on cost-effective allocation of mine water pollution abatement in catchments. Journal of Environmental Management 78(2): 138–148.CrossRefGoogle Scholar
  7. Bayramoglu, B. 2006. Transboundary pollution in the Black Sea: Comparison of institutional arrangements. Environmental & Resource Economics 35(4): 289–325.CrossRefGoogle Scholar
  8. Bérubé, G., and C. Cusson. 2002. The environmental legal and regulatory frameworks. Assessing fairness and efficiency. Energy Policy 30: 291–298.Google Scholar
  9. Byström, O. 1998. The nitrogen abatement cost in wetlands. Ecological Economics 26(3): 321–331.CrossRefGoogle Scholar
  10. Carraro, C. (ed.). 2000. Efficiency and equity in climate change policy. Amsterdam, the Netherlands: Kluwer Academic Publisher.Google Scholar
  11. Carraro, C., and B. Buchner. 2002. Equity, development and climate change policy. In Climate change policy regimes, international trade and growth, ed. C. Carraro, C. Kemfert, and B. Buchner. Buxelles: CEPS-ESRI Collaboration studies.Google Scholar
  12. Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, et al. 2009a. Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43: 3412–3420. doi: 10.1021/es802762a.CrossRefGoogle Scholar
  13. Conley, D.J., E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, L.A. Hansson, N.N. Rabalais, M. Voss, and L. Zillén. 2009b. Tackling hypoxia in the Baltic Sea: Is engineering a solution? Environmental Science and Technology 43(10): 3407–3411. doi: 10.1021/es8027633.CrossRefGoogle Scholar
  14. Destouni, G., G. Lindgren, and I.-M. Gren. 2006. Effects of inland nitrogen transport and attenuation modeling on coastal nitrogen load abatement. Environmental Science and Technology 40: 6208–6214. doi: 10.1021/es060025j.CrossRefGoogle Scholar
  15. Destouni G., F. Hannerz, C. Prieto, J. Jarsjö, and Y. Shibuo. 2008. Small unmonitored near-coastal catchment areas yielding large mass loading to the sea. Global Biogeochemical Cycles 22: GB4003 (10 pp). doi: 10.1029/2008GB003287.
  16. Destouni, G., K. Persson, C. Prieto, and R. Jarsjö. 2010. General quantification of catchment-scale nutrient and pollutant transport through the subsurface to surface and coastal waters. Environmental Science and Technology 44: 2048–2055.CrossRefGoogle Scholar
  17. Díaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  18. Elmgren, R., and U. Larsson. 2001. Europhication in the Baltic Sea area. Integrated coastal management issues. In Science and integrated coastal management, ed. B.V. Bodugen, and R.K. Turner, 15–3527. Berlin: Dahlem University Press.Google Scholar
  19. Elofsson, K. 2003. Cost effective reductions of stochastic agricultural nitrogen loads to the Baltic Sea. Ecological Economics 47(1): 13–31.CrossRefGoogle Scholar
  20. Elofsson, K. 2006. Cost uncertainty and unilateral abatement. Environmental & Resource Economics 36(2): 143–162.Google Scholar
  21. Fernandez, L. 2009. Waste water pollution abatement across international border. Environment and Development Economics 14(1): 67–88.CrossRefGoogle Scholar
  22. Galloway, J.N. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889.CrossRefGoogle Scholar
  23. Gini, C. 1921. Measurement of inequality of incomes. The Economic Journal 31: 124–126. doi: 10.2307/2223319.CrossRefGoogle Scholar
  24. Grasso, M. 2007. A normative ethical framework in climate change. Climatic Change 81: 223–246.CrossRefGoogle Scholar
  25. Gren, I.-M. 2008a. Evaluation of cost effectiveness and fairness of the Helcom Baltic Sea Action Plan. Vatten 4: 271–281.Google Scholar
  26. Gren, I.-M. 2008b. Mitigation and adaptation policies for stochastic water pollution: An application to the Baltic Sea. Ecological Economics 66(2–3): 337–347.CrossRefGoogle Scholar
  27. Gren, I.-M., and H. Folmer. 2003. International cooperation of stochastic environmental damage: The case of the Baltic Sea. Ecological Economics 47(1): 31–43.CrossRefGoogle Scholar
  28. Gren, I.M., G. Destouni, and H. Sharin. 2000. Cost effective management of stochastic coastal water pollution. Environmental modelling and assessment 5(4): 193–203.CrossRefGoogle Scholar
  29. Gren, I.M., G. Destouni, and R. Tempone. 2002. Cost effective policies for alternative distributions of stochastic water pollution. Journal of Environmental Management 66: 145–157.CrossRefGoogle Scholar
  30. Gren, I.-M., Y. Jonzon, and M. Lindqvist. 2008. Calculation of costs for nutrient reductions to the Baltic Sea. Technical report. Working paper no. 1. Department of Economics, SLU, Uppsala.Google Scholar
  31. Hannerz, F., and G. Destouni. 2006. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. Ambio 35(5): 214–219.CrossRefGoogle Scholar
  32. Helcom. 2004. The fourth Baltic Sea pollution load compilation (PLC-4). Helsinki, Finland: Helsinki Commission.Google Scholar
  33. Helcom. 2007. An approach to set country-wise nutrient reduction allocations to reach good marine environment of the Baltic Sea. Helcom BSAP Eutro Expo. Helsinki, Finland: Helsinki Commission.Google Scholar
  34. Huisman, J., H.C.P. Matthijs, and P.M. Visser. 2005. Harmful cyanobacteria. Springer Aquatic Ecology Series 3. Dordrecht: Springer.Google Scholar
  35. Kataria, M., K. Elofsson, and B. Hasler. 2010. Distributional assumptions in chance-constrained programming models of stochastic water pollution. Environmental Modeling and Assessment 15(4): 273–281.CrossRefGoogle Scholar
  36. Khadam, I., and J. Kaluarachchi. 2006. Trade off between cost minimization and equity in water quality management for agricultural watersheds. Water Resources Research 42: W10404.CrossRefGoogle Scholar
  37. Lange, A., C. Vogt, and A. Ziegler. 2007. On the importance of equity in international climate policy: An empirical analysis. Energy Economics 29(3): 545–562.CrossRefGoogle Scholar
  38. Markowska, A., and T. Zylizc. 1999. Costing an international public good: The case of the Baltic Sea eutrophication. Ecological Economics 30: 301–316.CrossRefGoogle Scholar
  39. NEFCO. 2008. Framework for a nutrient quota and credit’s trading system for the contracting parties of Helcom in order to reduce eutrophication of the Baltic Sea. http://www.nefco.org/files/Nefco_BS%20NTS_GSN_Final%20Report_20080229.pdf. Accessed 27 Jan 2011.
  40. Ringuis, L., A. Torvanger, and A. Underdal. 2002. Burden sharing and fairness principles in international climate policy. International Environmental Agreements: Politics, Law and Economics 2: 1–22.CrossRefGoogle Scholar
  41. Rosenthal, R. 2008. GAMS—a user’s guide. Washington, DC: GAMS Development Corporation.Google Scholar
  42. Savchuk, O.P., and F. Wulff. 2009. Long-term modelling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia 629: 209–224.CrossRefGoogle Scholar
  43. Secondi, G. (ed.). 2008. The development economics reader. Routledge: London.Google Scholar
  44. Sen, A. 1999. Development as freedom. New York: Anchor.Google Scholar
  45. Söderquist, T. 1998. Why give up money for the Baltic Sea? Motives for peoples’ willingness to pay. Environmental & Resource Economics 12/2: 141–153.Google Scholar
  46. Sutcliffe, B. 2005. World inequality and globalization. Oxford Review of Economic Policy 20(1): 15–37.CrossRefGoogle Scholar
  47. Turner, K., S. Georgiou, I.-M. Gren, F. Wulff, S. Barett, T. Söderqvist, I.J. Bateman, C. Folke, S. Langaas, T. Zylicz, K.-G. Mäler, and A. Markowska. 1999. Managing nutrient fluxes and pollution in the Baltic: An interdisciplinary simulation study. Ecological Economics 30: 333–352.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of EconomicsSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden

Personalised recommendations