Advertisement

AMBIO

, 40:705 | Cite as

Multi-Decadal Changes in Tundra Environments and Ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF)

  • Terry V. Callaghan
  • Craig E. Tweedie
  • Jonas Åkerman
  • Christopher Andrews
  • Johan Bergstedt
  • Malcolm G. Butler
  • Torben R. Christensen
  • Dorothy Cooley
  • Ulrika Dahlberg
  • Ryan K. Danby
  • Fred J. A. Daniёls
  • Johannes G. de Molenaar
  • Jan Dick
  • Christian Ebbe Mortensen
  • Diane Ebert-May
  • Urban Emanuelsson
  • Håkan Eriksson
  • Henrik Hedenås
  • Greg. H. R. Henry
  • David S. Hik
  • John E. Hobbie
  • Elin J. Jantze
  • Cornelia Jaspers
  • Cecilia Johansson
  • Margareta Johansson
  • David R. Johnson
  • Jill F. Johnstone
  • Christer Jonasson
  • Catherine Kennedy
  • Alice J. Kenney
  • Frida Keuper
  • Saewan Koh
  • Charles J. Krebs
  • Hugues Lantuit
  • Mark J. Lara
  • David Lin
  • Vanessa L. Lougheed
  • Jesper Madsen
  • Nadya Matveyeva
  • Daniel C. McEwen
  • Isla H. Myers-Smith
  • Yuriy K. Narozhniy
  • Håkan Olsson
  • Veijo A. Pohjola
  • Larry W. Price
  • Frank Rigét
  • Sara Rundqvist
  • Anneli Sandström
  • Mikkel Tamstorf
  • Rik Van Bogaert
  • Sandra Villarreal
  • Patrick J. Webber
  • Valeriy A. Zemtsov
Article

Abstract

Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.

Keywords

IPY Glaciers Permafrost Snow stratigraphy Tundra vegetation Limnology Shrubs Treeline 

Notes

Acknowledgments

This study is part of the IPY project 512, “Back to the Future” (www.ipybtf.org). We thank all the contributors to this Special Issue and those that have published previously or are in the process of publishing—particularly the many graduate students who have contributed to and benefited from this project. The project would have been impossible without the formative studies of many researchers who established the IBP Tundra Biome project and other long-term studies exploited in the BTF study. The co-ordination of the project was financed by a grant from the Swedish Science Research Council (Vetenskapsrådet grant number 327-2007-833) to TVC and the US National Science Foundation (ANS-0732885, OPP-9906692) to CT. TVC also gratefully acknowledges support from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas grants numbered 214-2008-188 and 214-2009-389). The remaining co-authors acknowledge their national research councils for supporting their participation. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US-NSF.

Supplementary material

13280_2011_179_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. ACIA. 2005. Arctic climate impact assessment—scientific report, 1st ed. New York: Cambridge University Press.Google Scholar
  2. Åkerman, H.J., and M. Johansson. 2008. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost and Periglacial Processes 19: 279–292.CrossRefGoogle Scholar
  3. Andrews, C., J. Dick, C. Jonasson, and T.V. Callaghan. 2011. Assessment of biological and environmental phenology at a landscape level from 30 years of fixed date repeat photography in Northern Sweden. Ambio. doi: 10.1007/s13280-011-0167-z.
  4. Arft, A.M., M.D. Walker, J. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs 69: 491–511.Google Scholar
  5. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G.S. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14(8): 1–20.CrossRefGoogle Scholar
  6. Björk, R.G., and U. Molau. 2007. Ecology of Alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39(1): 34–43.CrossRefGoogle Scholar
  7. Boelman, N.T., M. Stieglitz, K.L. Griffin, and G.R. Shaver. 2005. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra. Oecologia 143(4): 588–597. doi: 10.1007/s00442-005-0012-9.CrossRefGoogle Scholar
  8. Boelman, N.T., M. Stieglitz, H.M. Rueth, M. Sommerkorn, K.L. Griffin, G.R. Shaver, and J.A. Gamon. 2003. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 135(3): 414–421. doi: 10.1007/s00442-003-1198-3.Google Scholar
  9. Bokhorst, S., J.W. Bjerke, H. Tømmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.CrossRefGoogle Scholar
  10. Callaghan, T.V., L.O. Björn., Y. Chernov, F.S. Chapin, T.R. Christensen, B. Huntley, R. Ims, S. Jonasson, et al. 2005. Tundra and Polar Desert ecosystems. In ACIA. Arctic Climate Impact Assessment, 24–352. New York: Cambridge University Press.Google Scholar
  11. Callaghan, T.V., C.E. Tweedie, and P.J. Webber. 2011a. Multi-decadal changes in Tundra environments and ecosystems: The International Polar Year Back to the Future Project (IPY-BTF). Ambio. doi: 10.1007/s13280-011-0162-4.
  12. Callaghan, T.V., T.R. Cristensen, and E.J. Jantze. 2011b. Plant and vegetation dynamics on Disko Island, West Greenland: Snapshots separated by over 40 years. Ambio. doi: 10.1007/s13280-011-0169-x.
  13. Callaghan, T.V., and C.E. Tweedie (eds.) 2011. Multi-decadal changes in Tundra environments and ecosystems—The International Polar Year Back to the Future Project. Ambio Special Issue 40(6).Google Scholar
  14. Callaghan, T.V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 37: L14705. doi: 10.1029/2009GL042064,2010.CrossRefGoogle Scholar
  15. Chapin, F.S., M. Berman, T.V. Callaghan, P. Convey, A.-S. Crépin, K. Danell, H. Ducklow, B. Forbes, et al. 2005a. Polar systems. In Ecosystems and human well-being, Vol. 1: Current state and trends, ed. R. Hassan, R. Scholes, and N. Ash, 717–746. Washington: Island Press.Google Scholar
  16. Chapin, F.S., and G.R. Shaver. 1985. Individualistic growth response of tundra plant species to manipulation of light, temperature, and nutrients in a field experiment. Ecology 66: 564–576.CrossRefGoogle Scholar
  17. Chapin, F.S., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.CrossRefGoogle Scholar
  18. Chapin, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, et al. 2005b. Role of land-surface changes in Arctic summer warming. Science 310: 657–660.CrossRefGoogle Scholar
  19. Danby, R.K., S. Koh, D.S. Hik, and L.W. Price. 2011. Four decades of plant community change in the Alpine Tundra of Southwest Yukon, Canada. Ambio. doi: 10.1007/s13280-011-0172-2.
  20. Danby, R.K., and D.S. Hik. 2007. Variability, contingency, and rapid change in recent subarctic alpine treeline dynamics. Journal of Ecology 95: 352–363.CrossRefGoogle Scholar
  21. Daniëls, F.J.A., J.G. de Molenaar, M. Chytrý, and L. Tichý. 2011. Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Journal of Applied Vegetation Science 14: 230–241.CrossRefGoogle Scholar
  22. Daniёls, F.J.A., and J.G. de Molenaar. 2011. Flora and vegetation of Tasiilaq, Formerly Angmagssalik, Southeast Greenland—a comparison of data from between around 1900 and 2007. Ambio. doi: 10.1007/s13280-011-0171-3.
  23. Euskirchen, E.S., A.D. McGuire, F.S. Chapin, S. Yi, and C.D.C. Thompson. 2009. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: Implications for climate feedbacks. Ecological Applications 19: 1022–1043.CrossRefGoogle Scholar
  24. Forbes, B.C., M.M. Fauria, and P. Zetterberg. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 16: 1542–1554.CrossRefGoogle Scholar
  25. Goswami, S., J.A. Gamon, and C.E. Tweedie. 2011. Surface hydrology of an arctic ecosystem: Multiscale analysis of a flooding and draining experiment using spectral reflectance. Journal of Geophysical Research 116: G00I07. doi: 10.1029/2010JG001346.
  26. Hallinger, M., M. Manthey, and M. Wilmking. 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890–899.CrossRefGoogle Scholar
  27. Havström, M., T.V. Callaghan, and S. Jonasson. 1993. Differential growth responses of Cassiope tetragona, an arctic dwarf shrub, to environmental perturbations among three contrasting high- and sub-arctic sites. Oikos 66: 389–402.CrossRefGoogle Scholar
  28. Hedenås, H., H. Olsson, C. Jonasson, J. Bergstedt, U. Dahlberg, and T.V. Callaghan. 2011. Changes in tree growth, biomass and vegetation over a thirteen-year period in the Swedish Sub-Arctic. Ambio. doi: 10.1007/s13280-011-0173-1.
  29. Henry, G.H.R., and U. Molau. 1997. Tundra plants and climatic change: The International Tundra Experiment (ITEX). Global Change Biology 3(1): 1–9.CrossRefGoogle Scholar
  30. Hill, G.B., and G.H.R. Henry. 2011. Responses of high Arctic wet sedge Tundra to climate warming since 1980. Global Change Biology 17: 276–287.CrossRefGoogle Scholar
  31. Hinzman, L.D., N.D. Bettez, W.R. Bolton, F.S. Chapin, N.B. Dyurgerov, C.L. Fastie, B. Griffith, R.D. Hollister, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72: 251–298.CrossRefGoogle Scholar
  32. Hudson, J.M.G., and G.H.R. Henry. 2009. Increased plant biomass in a high Arctic heath community from 1981 to 2008. Ecology 90: 2657–2663.CrossRefGoogle Scholar
  33. IPCC. 2007. Climate change 2007: The physical science basis—contribution of working group I to the fourth assessment. Report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  34. Johansson, C., V.A. Pohjola, C. Jonasson, and T.V. Callaghan. 2011. Multi-decadal changes in snow characteristics in sub-Arctic Sweden. Ambio. doi: 10.1007/s13280-011-0164-2.
  35. Johansson, M., J. Åkerman, F. Keuper, T.R. Christensen, H. Lantuit, and T.V. Callaghan. 2011. Past and present permafrost temperatures in the Abisko area: Redrilling of boreholes. Ambio. doi: 10.1007/s13280-011-0163-3.
  36. Johansson, T., N. Malmer, P.M. Crill, T. Friborg, J.H. Akerman, M. Mastepanov, and T.R. Christensen. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biology 12: 2352–2369.CrossRefGoogle Scholar
  37. Johnson, D.R., D. Ebert-May, P.J. Webber, and C.E. Tweedie. 2011. Forecasting Alpine vegetation change using repeat sampling and a novel modeling approach. Ambio. doi: 10.1007/s13280-011-0175-z.
  38. Jónsdóttir, I.S., B. Magnússon, J. Gudmundsson, Á. Elmarsdóttir, and H. Hjartarson. 2005. Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biology 11: 553–563. doi: 10.1111/j.1365-2486.2005.00928.x.CrossRefGoogle Scholar
  39. Kaufman, D.S., D.P. Schneider, N.P. McKay, C.M. Ammann, R.S. Bradley, K.R. Briffa, G.H. Miller, B.L. Otto-Bliesner, et al. 2009. Recent warming reverses long-term Arctic cooling. Science 325: 1236–1239.CrossRefGoogle Scholar
  40. Kausrud, K.L., A. Mysterud, H. Steen, J.O. Vik, E. Østbye, B. Cazelles, E. Framstad, A.M. Eikeset, et al. 2008. Linking climate change to lemming cycles. Nature 456: 93–97.CrossRefGoogle Scholar
  41. Kohler, J., O. Brandt, M. Johansson, and T.V. Callaghan. 2006. A long Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Research 25(2): 91–113.CrossRefGoogle Scholar
  42. Krupnik, I., et al. 2011. Understanding Earth’s polar challenges: International Polar Year 20072008. Summary Report by ICSU/WMO Joint Committee for International Polar Year 2007–2008, University of the Arctic, Roveniemi. Edmonton: CCI Press.Google Scholar
  43. Kullman, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77.CrossRefGoogle Scholar
  44. Kumpula, T., A. Pajunen, E. Kaarleja, B.C. Forbes, and F. Stammler. 2011. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Global Environmental Change. doi: 10.1016/j.gloenvcha.2010.12.010.
  45. Lang, S.I., J.H.C. Cornelissen, A. Hölzer, C.J.F. ter Braak, M. Ahrens, T.V. Callaghan, and R. Aerts. 2009. Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: The importance of temporal, spatial and functional scales. Journal of Ecology 97: 299–310.CrossRefGoogle Scholar
  46. Lougheed, V.L., M.G. Butler, D.C. McEwen, and J.E. Hobbie. 2011. Changes in tundra pond limnology: Re-sampling Alaskan ponds after 40 years. Ambio. doi: 10.1007/s13280-011-0165-1.
  47. Madsen, J., C. Jaspers, M. Tamstorf, C.E. Mortensen, and F. Rigét. 2011. Long-term effects of grazing and global warming on the composition and carrying capacity of graminoid marshes for moulting geese in East Greenland. Ambio. doi: 10.1007/s13280-011-0170-4.
  48. Melillo, J., T.V. Callaghan, F.I. Woodward, E. Salati, and S.K. Sinha. 1990. The effects on ecosystems. In Climate change, the IPCC Scientific Assessment, ed. J. Houghton, G.J. Jenkins, and J.J. Ephraums, 282–310. New York: Cambridge University Press.Google Scholar
  49. Myers-Smith, I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs. 2011. Expansion of canopy-forming willows over the 20th century on Herschel Island, Yukon Territory, Canada. Ambio. doi: 10.1007/s13280-011-0168-y.
  50. NRC. 2006. Toward an integrated arctic observing network. Washington, DC: The National Academy Press.Google Scholar
  51. Olofsson, J., L. Oksanen, T.V. Callaghan, P.E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15: 2681–2693.CrossRefGoogle Scholar
  52. Parsons, A.N., J.M. Welker, P.A. Wookey, M.C. Press, T.V. Callaghan, and J.A. Lee. 1994. Growth responses of four sub-arctic dwarf shrubs to simulated environmental change. Journal of Ecology 82: 307–318.CrossRefGoogle Scholar
  53. Post, E., M.C. Forchhammer, S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.CrossRefGoogle Scholar
  54. Prach, K., J. Kosnar, J. Klimesova, and M. Hais. 2010. High Arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biology 33: 635–639.CrossRefGoogle Scholar
  55. Rundqvist,S., H. Hedenås, A. Sandström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio. doi: 10.1007/s13280-011-0174-0.
  56. Sandberg, G. 1963. Växtvärlden i Abisko nationalpark. In Natur i Lappland, II ed, ed. K. Curry-Lindahl, 885–909. Uppsala: Bokförlaget Svensk Natur. (in Swedish).Google Scholar
  57. Schuur, E.A.G., J. Bockheim, J.G. Canadell, E. Euskirchen, C.B. Field, S.V. Goryachkin, S. Hagemann, P. Kuhry, et al. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58: 701–714.CrossRefGoogle Scholar
  58. Shaver, G.R., T.V. Callaghan, C.E. Tweedie, and P.J. Webber. 2004. Flagship observatories for Arctic environmental research and monitoring. Woods Hole: Ecosystems Centre.Google Scholar
  59. Smith, L.C., Y. Sheng, G.M. MacDonald, and L.D. Hinzman. 2005. Disappearing Arctic lakes. Science 308: 1429.CrossRefGoogle Scholar
  60. Smol, J.P., and M.S.V. Douglas. 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences of the United States of America 104: 12395–12397.CrossRefGoogle Scholar
  61. Stow, D.A., A. Hope, D. McGuire, D. Verbyla, J. Gamon, F. Huemmrich, S. Houston, C. Racine, et al. 2004. Remote sensing of vegetation and land-cover change in Arctic Tundra ecosystems. Remote Sensing of Environment 89: 281–308.CrossRefGoogle Scholar
  62. Sturm, M., C.H. Racine, and K.D. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411: 546–547.CrossRefGoogle Scholar
  63. SWIPA. 2011. Snow, water, ice, permafrost in the Arctic. http://www.amap.no/swipa/.
  64. Tape, K.D., M. Sturm, and C.H. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12: 686–702.CrossRefGoogle Scholar
  65. Tømmervik, H., B. Johansen, I. Tombre, D. Thannheiser, K. Hogda, and E. Gaare. 2004. Vegetation changes in the Nordic mountain birch forest: The influence of grazing and climate change. Arctic, Antarctic, and Alpine Research 36: 323–332.CrossRefGoogle Scholar
  66. Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden show local and regional variability and only a minor role of 20th century climate warming. Journal of Biogeography. doi: 10.1111/j.1365-2699.2010.02453.x.
  67. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2009. Competitive interaction between aspen and birch moderated by invertebrate and vertebrate herbivores and climate warming. Plant Ecology & Diversity 2: 221–232.CrossRefGoogle Scholar
  68. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2010. Range expansion of thermophilic aspen (Populus tremula L.) in the Swedish Subarctic. Arctic, Antarctic, and Alpine Research 42: 362–375.CrossRefGoogle Scholar
  69. van Wijk, M.T., K.E. Clemmensen, G.R. Shaver, M. Williams, T.V. Callaghan, F.S. Chapin, J.H.C. Cornelissen, L. Gough, et al. 2004. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: Generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology 10: 105–123.CrossRefGoogle Scholar
  70. Verbyla, D. 2008. The greening and browning of Alaska based on 1982–2003 satellite data. Global Ecology and Biogeography 17: 547–555.CrossRefGoogle Scholar
  71. Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342 -1346.Google Scholar
  72. Walker, D.A., U.S. Bhatt, T.V. Callaghan, J.C. Comiso, H.E. Epstein, B.C. Forbes, M. Gill, W.A. Gould, et al. 2010. Vegetation. Bulletin of the American Meteorological Society 91: S115–S116.Google Scholar
  73. Walter, K.M., M.E. Edwards, G. Grosse, S.A. Zimov, and F.S. Chapin. 2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318: 633–636.CrossRefGoogle Scholar
  74. Wolf, A., T.V. Callaghan, and K. Larson. 2008. Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change 87: 51–73.CrossRefGoogle Scholar
  75. Wookey, P.A. 2008. Experimental approaches to predicting the future of tundra plant communities. Plant Ecology and Diversity 1: 299–307.CrossRefGoogle Scholar
  76. Wramneby, A., B. Smith, and P. Samuelsson. 2010. Hot spots of vegetation‐climate feedbacks under future greenhouse forcing in Europe. Journal of Geophysical Research 115: D21119. doi: 10.1029/2010JD014307.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Terry V. Callaghan
    • 1
    • 2
  • Craig E. Tweedie
    • 3
  • Jonas Åkerman
    • 4
  • Christopher Andrews
    • 5
  • Johan Bergstedt
    • 6
  • Malcolm G. Butler
    • 7
  • Torben R. Christensen
    • 8
  • Dorothy Cooley
    • 9
  • Ulrika Dahlberg
    • 10
  • Ryan K. Danby
    • 11
  • Fred J. A. Daniёls
    • 12
  • Johannes G. de Molenaar
    • 13
    • 41
  • Jan Dick
    • 5
  • Christian Ebbe Mortensen
    • 14
  • Diane Ebert-May
    • 15
  • Urban Emanuelsson
    • 16
  • Håkan Eriksson
    • 17
  • Henrik Hedenås
    • 18
  • Greg. H. R. Henry
    • 19
  • David S. Hik
    • 20
  • John E. Hobbie
    • 21
  • Elin J. Jantze
    • 22
  • Cornelia Jaspers
    • 23
  • Cecilia Johansson
    • 24
  • Margareta Johansson
    • 25
  • David R. Johnson
    • 3
  • Jill F. Johnstone
    • 26
  • Christer Jonasson
    • 18
  • Catherine Kennedy
    • 42
  • Alice J. Kenney
    • 27
  • Frida Keuper
    • 28
  • Saewan Koh
    • 20
  • Charles J. Krebs
    • 27
  • Hugues Lantuit
    • 29
  • Mark J. Lara
    • 3
  • David Lin
    • 3
  • Vanessa L. Lougheed
    • 3
  • Jesper Madsen
    • 30
  • Nadya Matveyeva
    • 31
  • Daniel C. McEwen
    • 32
  • Isla H. Myers-Smith
    • 20
  • Yuriy K. Narozhniy
    • 33
  • Håkan Olsson
    • 34
  • Veijo A. Pohjola
    • 24
  • Larry W. Price
    • 35
  • Frank Rigét
    • 32
  • Sara Rundqvist
    • 36
  • Anneli Sandström
    • 37
  • Mikkel Tamstorf
    • 32
  • Rik Van Bogaert
    • 38
  • Sandra Villarreal
    • 3
  • Patrick J. Webber
    • 15
    • 39
  • Valeriy A. Zemtsov
    • 40
  1. 1.Royal Swedish Academy of SciencesStockholmSweden
  2. 2.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  3. 3.Department of BiologyThe University of Texas at El PasoEl PasoUSA
  4. 4.Royal Swedish Academy of SciencesStockholmSweden
  5. 5.Centre for Ecology & HydrologyPenicuikUK
  6. 6.IFM—Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
  7. 7.Department of Biological SciencesNorth Dakota State UniversityFargoUSA
  8. 8.Department of Earth and Ecosystem Sciences, Division of Physical Geography and Ecosystem AnalysesLund UniversityLundSweden
  9. 9.Department of EnvironmentYukon Territorial GovernmentDawson CityCanada
  10. 10.LantmäterietGävleSweden
  11. 11.Department of Geography and School of Environmental StudiesQueen’s UniversityKingstonCanada
  12. 12.Institute of Biology and Biotechnology of PlantsMünsterGermany
  13. 13.Maurik The Netherlands
  14. 14.SkovlundeDenmark
  15. 15.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  16. 16.Swedish Biodiversity CentreUppsalaSweden
  17. 17.Umeå University, EMGUmeåSweden
  18. 18.Abisko Scientific Research StationAbiskoSweden
  19. 19.Department of GeographyUniversity of British ColumbiaVancouverCanada
  20. 20.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  21. 21.The Ecosystems Center, Marine Biological LaboratoryWoods HoleUSA
  22. 22.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  23. 23.DTU AquaCharlottenlundDenmark
  24. 24.Department of Earth SciencesUppsala UniversityUppsalaSweden
  25. 25.Department of Earth and Ecosystem SciencesLund UniversityLundSweden
  26. 26.Department of BiologyUniversity of SaskatchewanSaskatoonCanada
  27. 27.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  28. 28.Department of Systems EcologyVU University AmsterdamAmsterdamThe Netherlands
  29. 29.Alfred Wegener InstitutePotsdamGermany
  30. 30.Department of Arctic Environment, National Environmental Research Institute Aarhus UniversityRoskildeDenmark
  31. 31.Department of Vegetation of the Far NorthKomarov Botanical InstituteSt. PetersburgRussia
  32. 32.Department of BiosciencesMinnesota State University MoorheadMoorheadUSA
  33. 33.Research Laboratory of GlacioclimatologyTomsk State UniversityTomskRussia
  34. 34.Forest Resource Management Swedish university of Agricultural SciencesUmeåSweden
  35. 35.Department of GeographyPortland State UniversityPortlandUSA
  36. 36.Umeå UniverityUmeåSweden
  37. 37.GävleSweden
  38. 38.Flanders Research FoundationBrusselsBelgium
  39. 39.Ranchos de TaosUSA
  40. 40.Hydrology Department, Faculty of Geology and GeographyTomsk State UniversityTomskRussia
  41. 41.Alterra, Wageningen UniversityWageningenThe Netherlands
  42. 42.Department of EnvironmentYukon Territorial GovernmentWhitehorseCanada

Personalised recommendations