Skip to main content
Log in

Forecasting Alpine Vegetation Change Using Repeat Sampling and a Novel Modeling Approach

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Global change affects alpine ecosystems by, among many effects, by altering plant distributions and community composition. However, forecasting alpine vegetation change is challenged by a scarcity of studies observing change in fixed plots spanning decadal-time scales. We present in this article a probabilistic modeling approach that forecasts vegetation change on Niwot Ridge, CO using plant abundance data collected from marked plots established in 1971 and resampled in 1991 and 2001. Assuming future change can be inferred from past change, we extrapolate change for 100 years from 1971 and correlate trends for each plant community with time series environmental data (1971–2001). Models predict a decreased extent of Snowbed vegetation and an increased extent of Shrub Tundra by 2071. Mean annual maximum temperature and nitrogen deposition were the primary a posteriori correlates of plant community change. This modeling effort is useful for generating hypotheses of future vegetation change that can be tested with future sampling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong, D.M., J.C. Halfpenny, and C.H. Southwick. 2001. Vertebrates. In Structure and function of an alpine ecosystem, ed. W.D. Bowman, and T.R. Seastedt, 128–156. New York: Oxford University Press.

    Google Scholar 

  • Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.

    Article  Google Scholar 

  • Bowman, W.D., J.R. Garner, K. Holland, and M. Wiedermann. 2006. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications 16: 1183–1193.

    Article  Google Scholar 

  • Bowman, W.D., and T.R. Seastedt. 2001. Structure and function of an alpine ecosystem: Niwot Ridge, Colorado. Long-term ecological research network series. New York: Oxford University Press.

  • Callaghan, T.V. 1976. Strategies of growth and population dynamics of tundra plants. 3. Growth and population dynamics of Carex bigelowii in an alpine environment. Oikos 27: 402–413.

    Article  Google Scholar 

  • Callaghan, T.V., C.E. Tweedie, and P.J. Webber. 2011. Multi-decadal changes in tundra environments and ecosystems: The International Polar Year Back to the Future project (IPY-BTF). Ambio. doi:10.1007/s13280-011-0162-4.

  • Cannone, N., S. Sgorbatti, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and Environment 5: 360–364.

    Article  Google Scholar 

  • Chow, D.W. 2010. Changes in the timing of snowmelt and stream flow in Colorado: A response to recent warming. Journal of Climate Research 23: 2293–2306.

    Article  Google Scholar 

  • Costa, P.M., and C. Wilson. 2000. An equivalence factor between CO2 avoided emissions and sequestration—description and applications in forestry. Mitigation and Adaptation Strategies for Global Change 5: 51–60.

    Article  Google Scholar 

  • Costanza, R., and A. Voinov. 2001. Modeling ecological and economic systems with STELLA: Part III. Ecological Modeling 143: 1–7.

    Article  Google Scholar 

  • Crimmens, S.M., S.Z. Dobrowski, J.A. Greenberg, J.T. Abatzoglou, and A.R. Mynsberge. 2011. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331: 324–327.

    Article  Google Scholar 

  • Dunne, J.A., J. Harte, and K.J. Taylor. 2003. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecological Monographs 73: 69–86.

    Article  Google Scholar 

  • Ebert-May, D. 1973. Models for predicting composition and production of alpine tundra vegetation from Niwot Ridge, Colorado. MS Thesis, University of Colorado, Boulder, CO.

  • Ebert-May, D. 1976. The response of alpine tundra vegetation in Colorado to environmental variation. PhD Thesis, University of Colorado, Boulder, CO.

  • Ebert-May, D., and P.J. Webber. 1982. Spatial and temporal variation of vegetation and its productivity on Niwot Ridge, Colorado. In Ecological studies in the Colorado alpine, a festschrift for John W. Marr (Occasional paper number 37), ed. J. Halfpenny. Boulder: Institute of Arctic and Alpine Research, University of Colorado.

  • Epstein, H.E., Q. Yu, J.O. Kaplan, and H. Liscike. 2007. Simulating future changes in arctic and subarctic vegetation. Computing in Science and Engineering 9: 12–23.

    CAS  Google Scholar 

  • Erschammer, B., T. Kiebacher, M. Mallaun, and P. Unterluggauer. 2009. Short-term signals of climate change along an altitudinal gradient in the Southern Alps. Plant Ecology 202: 79–89.

    Article  Google Scholar 

  • Finzi, A.C., A.T. Austin, E.E. Cleland, S.D. Frey, B.Z. Houlton, and M.D. Wallenstein. 2011. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Frontiers in Ecology and the Environment 9: 61–67.

    Article  Google Scholar 

  • Gams, H. 1961. Erfassung und Dorstellung mehrdimensional verwantschaftbezeinhungen von Sippen und Lebengemeinschaften. Berichte des Geobotanischen Institutes der Eidgenössische Technische Hochschule, Stiftung Rübel Zurich 1960(32): 96–115.

    Google Scholar 

  • Gerdol, R., L. Brancaleoni, R. Marchesini, and L. Bragazza. 2002. Nutrient and carbon relations in subalpine dwarf shrubs after neighbor removal or fertilization in northern Italy. Oecologia 130: 476–783.

    Article  Google Scholar 

  • Grant, W.E., and N.R. French. 1990. Responses of alpine tundra to a changing climate: A hierarchical simulation model. Ecological Modeling 49: 205–227.

    Article  Google Scholar 

  • Greenland, D., and M. Losleben. 2001. Climate. In Structure and function of an alpine ecosystem, ed. W.D. Bowman, and T.R. Seastedt, 15–31. New York: Oxford University Press.

    Google Scholar 

  • Hallinger, M., M. Manthey, and M. Wilmking. 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890–899.

    Article  Google Scholar 

  • Hedenås, H., H. Olsson, C. Jonasson, J. Bergstedt, U. Dahlberg, and T.V. Callaghan. 2011. Tree growth, biomass and vegetation changes over a thirteen-year period in the Swedish sub-arctic. Ambio. doi:10.1007/s13280-011-0173-1.

  • Komárková, V., and P.J. Webber. 1978. An alpine vegetation map of Niwot Ridge, Colorado. Arctic and Alpine Research 10: 1–29.

    Article  Google Scholar 

  • Körner, C. 1995. Alpine plant diversity: A global survey and functional interpretations. In Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, ed. F.S. Chapin III, and C. Körner, 45–62. New York: Springer.

    Google Scholar 

  • Körner, C. 1999. Alpine plant life: Functional plant ecology of high mountain ecosystems. New York: Springer.

    Google Scholar 

  • Kullman, L. 2010. A richer, greener and smaller alpine world: Review and projection of warming-induced plant cover change in the Swedish Scandes. Ambio 39: 159–169.

    Article  Google Scholar 

  • Lesica, P., and B.M. Steele. 1996. A method for monitoring long-term population trends: An example using arctic and alpine plants. Ecological Applications 6: 879–887.

    Article  Google Scholar 

  • Litaor, M.I., M. Williams, and T.R. Seastedt. 2008. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. Journal of Geophysical Research 113: G02008.

    Article  Google Scholar 

  • Manley, W.F., E.G. Parrish, and L.R. Lestak. 2009. High-resolution orthorectified imagery and digital elevation models for study of environmental change at Niwot Ridge and Green Lakes Valley, Colorado: Niwot Ridge LTER. Boulder: INSTAAR, University of Colorado at Boulder, digital media.

  • Marr, J.W. 1961. Ecosystems of the east slope of the Front Range in Colorado. University of Colorado studies, series 8 in biology, 134 pp. Boulder: University of Colorado.

  • Olofsson, J., L. Oksanen, T. Callaghan, P.E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15: 2681–2693.

    Article  Google Scholar 

  • Pauli, H., M. Gottfried, and G. Grabherr. 1999. Vascular plant distribution patters at the low temperature limits of life—the alpine-nival ecotone of Mount Schrnakogel (Tyrol, Austria). Phytocoenologia 29: 297–325.

    Google Scholar 

  • Pauli, H., M. Gottfried, K. Reiter, C. Klettner, and G. Grabherr. 2007. Signals of range expansions and contractions of vascular plats in the high Alps: Observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13: 147–156.

    Article  Google Scholar 

  • Scherrer, D., and C. Körner. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16: 2602–2613.

    Google Scholar 

  • Scherrer, D., and C. Körner. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406–416.

    Article  Google Scholar 

  • Schob, C., P.M. Kammer, P. Choler, and H. Velt. 2009. Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Polar Biology 200: 91–104.

    Google Scholar 

  • Schultz, E.D., and H.A. Mooney. 1993. Biodiversity and ecosystem function. Berlin: Springer.

    Google Scholar 

  • Servilla, M., D. Costa, C. Laney, I. San Gil, and J. Brunt. 2008. The EcoTrends Web Portal: An architecture for data discovery and exploitation. Albuquerque: Environmental Information Management, University of New Mexico.

  • Sherrod, S.K., T.R. Seastedt, and M.D. Walker. 2005. Northern pocket gopher (Thomomys talpoides) control of alpine plant community structure. Arctic, Antarctic, and Alpine Research 37: 585–590.

    Article  Google Scholar 

  • Suding, K.N., A.E. Miller, H. Bechtold, and W.D. Bowman. 2006. The consequences of species loss on ecosystem nitrogen cycling depends on community compensation. Oecologia 149: 141–149.

    Article  Google Scholar 

  • Tieszen, L.L. 1978. Vegetation and production ecology of an Alaskan arctic tundra. New York: Springer.

    Google Scholar 

  • Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M.D. Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography 38: 907–921.

    Article  Google Scholar 

  • Voinov, A., C. Fitz, R. Boumans, and R. Costanza. 2004. Modular ecosystem modeling. Environmental Modeling and Software 19: 285–304.

    Article  Google Scholar 

  • Volk, M., D. Obrist, K. Novak, R. Giger, S. Bassin, and J. Fuhrer. 2011. Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentrations. Global Change Biology 17: 366–376.

    Article  Google Scholar 

  • Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–1346.

    Article  CAS  Google Scholar 

  • Walker, M.D., D.A. Walker, T.A. Theodose, and P.J. Webber. 2001. The vegetation: hierarchical species–environment relationships. In Structure and function of an alpine ecosystem, ed. W.D. Bowman, and T.R. Seastedt, 99–127. New York: Oxford University Press.

    Google Scholar 

  • Walker, M.D., P.J. Webber, E.H. Arnold, and D. Ebert-May. 1994. Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 76: 1067–1083.

    Article  Google Scholar 

  • Webber, P.J. 1971. Gradient analysis of the vegetation around the Lewis Valle North-Central Baffin Island, Northwest Territories, Canada. PhD Thesis, Queen’s University, Kingston, Canada.

  • Webber, P.J., J.E. Emerick, D.C. Ebert May, and V. Komárková. 1976. Impacts of increased snowfall on alpine vegetation. In Ecological impacts of snowpack augmentation in the San Juan Mountains Colorado, ed. H.W. Steinhoff, and J.D. Ives, 201–264. Final report, San Juan Ecological Project, Colorado State University, Fort Collins.

  • Williams, M.W., P.D. Brooks, and T. Seastedt. 1998. Nitrogen and carbon soil dynamics in response to climate change in a high-elevation ecosystem in the Rocky Mountains, U.S.A. Arctic and Alpine Research 30: 26–30.

    Article  Google Scholar 

  • Wipf, S., and C. Rixen. 2010. A review of snow manipulation experiments in arctic and alpine tundra ecosystems. Polar Research 29: 95–109.

    Article  Google Scholar 

  • Wipf, S., V. Stoeckli, and P. Bebi. 2009. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Climatic Change 94: 105–121.

    Article  Google Scholar 

  • Woodward, F.I., and M.R. Lomas. 2004. Vegetation dynamics: Simulating responses to climatic change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wookey, P.A., R. Aerts, R.D. Bardgett, F. Baptist, K.A. Brathen, J.H.C. Cornelissen, L. Gough, I.P. Hartley, et al. 2009. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of arctic and alpine ecosystems to environmental change. Global Change Biology 15: 1153–1172.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the US National Science Foundation (ANS-0732885, OPP-9906692). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. We are appreciative of comments and reviews offered by Christine Laney, Sandra Villarreal, and others at the Systems Ecology Lab at the University of Texas at El Paso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.R., Ebert-May, D., Webber, P.J. et al. Forecasting Alpine Vegetation Change Using Repeat Sampling and a Novel Modeling Approach. AMBIO 40, 693–704 (2011). https://doi.org/10.1007/s13280-011-0175-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-011-0175-z

Keywords

Navigation