Advertisement

AMBIO

, Volume 40, Issue 2, pp 179–190 | Cite as

The Future of Baltic Sea Populations: Local Extinction or Evolutionary Rescue?

  • Kerstin Johannesson
  • Katarzyna Smolarz
  • Mats Grahn
  • Carl André
Article

Abstract

Environmental change challenges local and global survival of populations and species. In a species-poor environment like the Baltic Sea this is particularly critical as major ecosystem functions may be upheld by single species. A complex interplay between demographic and genetic characteristics of species and populations determines risks of local extinction, chances of re-establishment of lost populations, and tolerance to environmental changes by evolution of new adaptations. Recent studies show that Baltic populations of dominant marine species are locally adapted, have lost genetic variation and are relatively isolated. In addition, some have evolved unusually high degrees of clonality and others are representatives of endemic (unique) evolutionary lineages. We here suggest that a consequence of local adaptation, isolation and genetic endemism is an increased risk of failure in restoring extinct Baltic populations. Additionally, restricted availability of genetic variation owing to lost variation and isolation may negatively impact the potential for evolutionary rescue following environmental change.

Keywords

Biocomplexity Endemic lineages Evolution of tolerance to contamination Genetic variation Marginal environment 

Notes

Acknowledgments

We are very grateful to Michael Gilek and the organizers of the conference “Coping with Uncertainty” and to two anonymous reviewers that indicated weaknesses in an earlier version. This work was in part performed at the Linnaeus Centre for Marine Evolutionary Biology (www.cemeb.science.gu.se) supported by the Swedish Research Councils VR and Formas. The work was in addition funded by the Foundation for Baltic and East European Studies (to MG and KS) and by the EU BONUS programs BaltGene and RISKGOV through EC and Formas funding.

References

  1. Andersen, Ø., O.F. Wetten, M.C. De Rosa, C. Andre, C.C. Alinovi, M. Colafranceschi, O. Brix, and A. Colosimo. 2009. Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations. Proceedings of the Royal Society of London B 276: 833–841.CrossRefGoogle Scholar
  2. André, C., L.C. Larsson, L. Laikre, D. Bekkevold, J. Brigham, G.R. Carvalho, T.G. Dahlgren, and W.F. Hutchinson et al. 2010. Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): Direct, simultaneous evaluation of neutral versus putatively selected loci. Heredity doi: 10.1038/hdy.2010.71.
  3. Barrett, R.D.H., and D. Schluter. 2008. Adaptation from standing genetic variation. Trends in Ecology & Evolution 23: 38–44.CrossRefGoogle Scholar
  4. Bell, G., and S. Collins. 2008. Adaptation, extinction and global change. Evolutionary Applications 1: 3–16.CrossRefGoogle Scholar
  5. Bell, G., and A. Gonzalez. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecology Letters 12: 942–948.CrossRefGoogle Scholar
  6. Bengtsson, B.O. 2003. Genetic variation in organisms with sexual and asexual reproduction. Journal of Evolutionary Biology 16: 189–199.CrossRefGoogle Scholar
  7. Berggren, P., L. Hiby, P. Lovell, and M. Scheidat. 2004. Abundance of harbour porpoises in the Baltic Sea from aerial surveys conducted in summer 2002. Paper SC/56/SM7. International Whaling Commission, Cambridge, UK.Google Scholar
  8. Bergström, L., A. Tatarenkov, K. Johannesson, R.B. Jönsson, and L. Kautsky. 2005. Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. Journal of Phycology 41: 1025–1038.CrossRefGoogle Scholar
  9. Bickham, J.W., S. Sandhu, P.D.N. Hebert, L. Chikhi, and R. Athwal. 2000. Effects of chemical contaminants on genetic diversity in natural populations: Implications for biomonitoring and ecotoxicology. Mutational Research 463: 33–51.CrossRefGoogle Scholar
  10. Bleil, M., R. Oeberst, and P. Urrutia. 2009. Seasonal maturity development of Baltic cod in different spawning areas: Importance of the Arkona Sea for the summer spawning stock. Journal of Applied Ichthyology 25: 10–17.CrossRefGoogle Scholar
  11. Chakraborty, R., and M. Nei. 1977. Bottleneck effects on average heterozygosity and genetic distance with stepwise mutation model. Evolution 31: 347–356.CrossRefGoogle Scholar
  12. Colosimo, P.F., K.E. Hosemann, S. Balabhadra, G. Villarreal Jr, M. Dickson, J. Grimwood, J. Schmutz, R.M. Myers, et al. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 37: 1928–1933.CrossRefGoogle Scholar
  13. Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, et al. 2009. Hypoxia related processes in the Baltic Sea. Environmental Science and Technology 43: 3412–3420.CrossRefGoogle Scholar
  14. Ducrotoy, J.-P., and M. Elliott. 2008. The science and management of the North Sea and the Baltic Sea: Natural history, present threats and future challenges. Marine Pollution Bulletin 57: 8–21.CrossRefGoogle Scholar
  15. Edmands, S. 1999. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53: 1757–1768.CrossRefGoogle Scholar
  16. Ellstrand, N.C., and K. Schierenback. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences USA 97: 7043–7050.CrossRefGoogle Scholar
  17. Elmgren, R., and C. Hill. 1997. Ecosystem function at low biodiversity—the Baltic example. In Marine biodiversity patterns and processes, ed. R.F.G. Ormond, J.D. Gage, and M.V. Angel, 319–336. Cambridge: Cambridge University Press.Google Scholar
  18. Eriksson, K.M., A.K. Clarke, L.-G. Franzen, M. Kuylenstierna, K. Martinez, and H. Blanck. 2009. Community-level analysis of psbA gene sequences and irgarol tolerance in marine periphyton. Applied and Environmental Microbiology 75: 897–906.CrossRefGoogle Scholar
  19. Florin, A.B., and J. Höglund. 2008. Population structure of flounder (Platichthys flesus) in the Baltic Sea: Differences among demersal and pelagic spawners. Heredity 101: 27–38.CrossRefGoogle Scholar
  20. Gaggiotti, O.E., D. Bekkevold, H.B.H. Jørgensen, M. Foll, G.R. Carvalho, C. André, and D.E. Ruzzante. 2009. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63: 2939–2951.CrossRefGoogle Scholar
  21. Gamfeldt, L., J. Wallén, P.R. Jonsson, K.K. Berntsson, and J. Havenhand. 2005. Intraspecific diversity enhances settling success in a marine invertebrate. Ecology 86: 3219–3224.CrossRefGoogle Scholar
  22. Gardeström, J., U. Dahl, O. Kotsalainen, A. Maxson, T. Elfwing, M. Grahn, B.E. Bengtsson, and M. Breitholtz. 2008. Evidence of population genetic effects of long-term exposure to contaminated sediments—a multi-endpoint study with copepods. Aquatic Toxicology 86: 426–436.CrossRefGoogle Scholar
  23. Härkönen, T., K.J. Harding, S.J. Goodman, and K. Johannesson. 2005. Colonization history of the Baltic harbor seals: integrating archaeological, behavioral and genetic data. Marine Mammal Science 21: 695–716.CrossRefGoogle Scholar
  24. Hellberg, M.E. 2009. Gene flow and isolation among populations of marine animals. Annual Review of Ecology, Evolution, and Systematics 40: 291–310.CrossRefGoogle Scholar
  25. Hemmer-Hansen, J., E.E. Nielsen, J. Frydenberg, and V. Löeschcke. 2007. Adaptive divergence in a high gene flow environment: Hsc70 variation in the European flounder (Platicthys flesus L.). Heredity 99: 592–600.CrossRefGoogle Scholar
  26. Hughes, A.R., B.D. Inouye, M.T.J. Johnson, N. Underwood, and M. Vellend. 2008. Ecological consequences of genetic diversity. Ecology Letters 11: 609–623.CrossRefGoogle Scholar
  27. Jansson, B.O., and K.K. Dahlberg. 1999. The environmental status of the Baltic Sea in the 1940s, today and in the future. AMBIO 28: 312–319.Google Scholar
  28. Johannesson, K., and C. André. 2006. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology 15: 2013–2029.CrossRefGoogle Scholar
  29. Kautsky, N., and S. Evans. 1987. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series 38: 201–212.CrossRefGoogle Scholar
  30. Lago-Leston, A., C. Mota, L. Kautsky, and G.A. Pearson. 2010. Functional divergence in heat shock response following rapid speciation of Fucus spp. in the Baltic Sea. Marine Biology 157: 683–688.CrossRefGoogle Scholar
  31. Larmuseau, M.H.D., K. Vancampenhout, J.A.M. Raeymaekers, J.K.J. Van Houdt, and F.A.M. Volchaert. 2010. Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of the sand goby, Pomatoschistus minutus. Molecular Ecology 19: 2256–2268.CrossRefGoogle Scholar
  32. Larsen, P.F., E.E. Nielsen, T.D. Williams, and V. Loeschcke. 2008. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity 101: 247–259.CrossRefGoogle Scholar
  33. Larsson, L.C., L. Laikre, S. Palm, C. André, G.R. Carvalho, and N. Ryman. 2007. Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Molecular Ecology 16: 1135–1147.CrossRefGoogle Scholar
  34. Larsson, L.C., L. Laikre, C. André, T.G. Dahlgren, and N. Ryman. 2010. Temporally stable genetic structure of heavily exploited Atlantic herring (Clupea harengus) in Swedish waters. Heredity 104: 40–51.CrossRefGoogle Scholar
  35. Leppäkoski, E., and S. Olenin. 2000. Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2: 152–163.CrossRefGoogle Scholar
  36. Limborg, M.T., J.S. Pedersen, J. Hemmer-Hansen, J. Tomkiewicz, and D. Bekkevold. 2009. Genetic population structure of European sprat Sprattus sprattus: Differentiation across a steep environmental gradient in a small pelagic fish. Marine Ecology Progress Series 379: 213–224.CrossRefGoogle Scholar
  37. Ma, X.L., D.L. Cowles, and R.L. Carter. 2000. Effects of pollution on genetic diversity in the bay mussel Mytilus galloprovincialis and the acorn barnacle Balanus glandula. Marine Environmental Research 50: 559–563.CrossRefGoogle Scholar
  38. MacKenzie, B.R., H. Gislason, C. Mollmann, and F.W. Koster. 2007. Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13: 1348–1367.CrossRefGoogle Scholar
  39. Meier, H.E.M. 2006. Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics 27: 39–68.CrossRefGoogle Scholar
  40. Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.Google Scholar
  41. Nei, M., T. Maruyama, and R. Chakraborty. 1975. Bottleneck effect and genetic variability in populations. Evolution 29: 1–10.CrossRefGoogle Scholar
  42. Neumann, T. 2010. Climate-change effects on the Baltic Sea ecosystem: A model study. Journal of Marine Systems 81: 213–224.CrossRefGoogle Scholar
  43. Nikula, R., P. Strelkov, and R. Väinölä. 2008. A broad transition zone between an inner Baltic hybrid swarm and a pure North Sea subspecies of Macoma balthica (Mollusca, Bivalvia). Molecular Ecology 17: 1505–1522.CrossRefGoogle Scholar
  44. Nilsson, J., R. Gross, T. Asplund, O. Dove, H. Jansson, J. Kelloniemi, L. Kohlmann, A. Löytynoja, et al. 2001. Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic Sea area. Molecular Ecology 10: 89–102.CrossRefGoogle Scholar
  45. Nilsson, C., F. Lepori, B. Malmqvist, E. Tornlund, N. Hjerdt, J.M. Helfield, D. Palm, J. Östergren, et al. 2005. Forecasting environmental responses to restoration of rivers used as log floatways: An interdisciplinary challenge. Ecosystems 8: 779–800.CrossRefGoogle Scholar
  46. Nissling, A., and L. Westin. 1997. Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Marine Ecology Progress Series 152: 261–271.CrossRefGoogle Scholar
  47. Pearson, G., L. Kautsky, and E. Serrao. 2000. Recent evolution in Baltic Fucus vesiculosus: Reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Marine Ecology Progress Series 202: 67–79.CrossRefGoogle Scholar
  48. Peck, J.R., J.M. Yearsley, and D. Waxman. 1998. Explaining the geographic distributions of sexual and asexual populations. Nature 391: 889–892.CrossRefGoogle Scholar
  49. Pereyra, R., L. Bergström, L. Kautsky, and K. Johannesson. 2009. Rapid speciation in a newly opened post-glacial marine environment, the Baltic Sea. BMC Evolutionary Biology 9: 70.CrossRefGoogle Scholar
  50. Reusch, T.B.H., W.T. Stam, and J.L. Olsen. 2000. A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Molecular Ecology 9: 127–140.CrossRefGoogle Scholar
  51. Reusch, T.B.H., A. Ehlers, A. Hämmerli, and B. Worm. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences USA 102: 2826–2831.CrossRefGoogle Scholar
  52. Riginos, C., and C.W. Cunningham. 2005. Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Molecular Ecology 14: 381–400.CrossRefGoogle Scholar
  53. Ruzzante, D., S. Mariani, D. Bekkevold, C. André, H. Mosegaard, L. Clausen, T. Dahlgren, W. Hutchinson, et al. 2006. Biocomplexity in a highly migratory marine pelagic fish. Proceedings of the Royal Society London Series B 273: 1459–1464.CrossRefGoogle Scholar
  54. Samani, P., and G. Bell. 2010. Adaptation of experimental yeast populations to stressful conditions in relation to population size. Journal of Evolutionary Biology 23: 791–796.CrossRefGoogle Scholar
  55. Schindler, D.E., R. Hilborn, B. Chasco, C.P. Boatright, T.P. Quinn, L.A. Rogers, and M.S. Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature 465: 609–613.CrossRefGoogle Scholar
  56. Silvertown, J. 2008. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. International Journal of Plant Sciences 169: 157–168.CrossRefGoogle Scholar
  57. Smith, J.M. 1989. The causes of extinction. Philosophical Transactions of the Royal Society B: Biological Sciences 325: 241–252.CrossRefGoogle Scholar
  58. Stenseth, N.C., P.E. Jorde, K.S. Chan, E. Hansen, H. Knutsen, C. André, M.D. Skogen, and K. Lekve. 2006. Ecological and genetic impact of Atlantic cod larval drift in the Skagerrak. Proceedings of the Royal Society London B 273: 1085–1092.CrossRefGoogle Scholar
  59. Sterner, T. 2007. Unobserved diversity, depletion and irreversibility: The importance of subpopulations for management of cod stocks. Ecological Economics 61: 566–574.CrossRefGoogle Scholar
  60. Stuckas, H., K. Stoof, H. Quesada, and R. Tiedemann. 2009. Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity 103: 146–156.CrossRefGoogle Scholar
  61. Tatarenkov, A., L. Bergström, R.B. Jönsson, E.A. Serrao, L. Kautsky, and K. Johannesson. 2005. Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Molecular Ecology 14: 647–651.CrossRefGoogle Scholar
  62. Väinölä, R., and S.L. Varvio. 1989. Biosystematics of Macoma balthica in north-western Europe. In Reproduction, genetics and distribution of marine organisms, ed. J.S. Ryland, and A. Tyler, 309–316. Fredensborg: Olsen & Olsen.Google Scholar
  63. Van Doorslaer, W., J. Vanoverbeke, C. Duvivier, S. Rousseaux, M. Jansen, B. Jans, H. Feuchtmayr, D. Atkinson, et al. 2009. Low adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Global Change Biology 15: 3046–3055.CrossRefGoogle Scholar
  64. Was, A., E. Gosling, and G. Hoarau. 2010. Microsatellite analysis of plaice (Pleuronectes platessa L.) in the NE Atlantic: Weak genetic structuring in a milieu of high gene flow. Marine Biology 157: 447–462.CrossRefGoogle Scholar
  65. Wiemann, A., L.W. Andersen, P. Berggren, U. Siebert, H. Benke, J. Teilmann, C. Lockyer, I. Pawliczka, et al. 2010. Mitochondrial control region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters. Conservation Genetics 11: 195–211.CrossRefGoogle Scholar
  66. Wikström, S.A., and L. Kautsky. 2007. Structure and diversity of invertebrate communities in the presence and absence of canopy forming Fucus vesiculosus in the Baltic Sea. Estuarine, Coastal and Shelf Science 72: 168–176.CrossRefGoogle Scholar
  67. Williams, S.L., and K.L. Heck. 2001. Seagrass community ecology. In Marine community ecology, ed. M.D. Bertness, et al., 317–338. Sunderland: Sinauer.Google Scholar
  68. Wirgin, I., and J.R. Waldman. 2004. Resistance to contaminants in North American fish populations. Mutation Research 552: 73–100.Google Scholar
  69. Zillén, L., D.J. Conley, T. Andrén, E. Andrén, and S. Björck. 2008. Past occurrence of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Science Reviews 91: 77–92.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Kerstin Johannesson
    • 1
  • Katarzyna Smolarz
    • 2
  • Mats Grahn
    • 3
  • Carl André
    • 1
  1. 1.Department of Marine Ecology-Tjärnö University of GothenburgStrömstadSweden
  2. 2.Centre for Baltic and East European StudiesSödertörn UniversityHuddingeSweden
  3. 3.School of Life SciencesSödertörn UniversityHuddingeSweden

Personalised recommendations