, Volume 40, Issue 3, pp 264–273 | Cite as

Climate Warming and the Recent Treeline Shift in the European Alps: The Role of Geomorphological Factors in High-Altitude Sites

  • Giovanni Leonelli
  • Manuela Pelfini
  • Umberto Morra di Cella
  • Valentina Garavaglia


Global warming and the stronger regional temperature trends recently recorded over the European Alps have triggered several biological and physical dynamics in high-altitude environments. We defined the present treeline altitude in three valleys of a region in the western Italian Alps and reconstructed the past treeline position for the last three centuries in a nearly undisturbed site by means of a dendrochronological approach. We found that the treeline altitude in this region is mainly controlled by human impacts and geomorphological factors. The reconstruction of the altitudinal dynamics at the study site reveals that the treeline shifted upwards of 115 m over the period 1901–2000, reaching the altitude of 2505 m in 2000 and 2515 m in 2008. The recent treeline shift and the acceleration of tree colonization rates in the alpine belt can be mainly ascribed to the climatic input. However, we point out the increasing role of geomorphological factors in controlling the future treeline position and colonization patterns in high mountains.


Climate change Treeline Geomorphology Tree rings Larix decidua European Alps 



This research was supported by the European Social Fund, the Autonomous Region of Valle d’Aosta and the Italian Ministry of Labour and Social Welfare; it was also funded by the PRIN 2008 project ‘Climate change effects on glaciers, permafrost and derived water resource. Quantification of the ongoing variations in the Italian Alps, analysis of their impacts and modelling future projections’, national coordinator Prof. C. Smiraglia. The authors wish to thank Prof. M. Maugeri and Prof. R. Böhm for providing the Aosta and the HISTALP series, respectively, and Dr. M. Cocco and Dr. D. Castagneri for their help in tree sampling.


  1. Ali, A.A., C. Carcaillet, J.-L. Guendon, J.-F. Roiron, J.-F. Terral, and Y. Quinif. 2003. The Early Holocene treeline in the Southern French Alps: New evidence from travertine formations. Global Ecology and Biogeography 12: 411–419.CrossRefGoogle Scholar
  2. Applequist, M.B. 1958. A simple pith locator for use with off-center increment cores. Journal of Forestry 56: 141.Google Scholar
  3. Barry, R.G. 1981. Mountain weather and climate. London: Methuen.Google Scholar
  4. Bernetti, G. 1998. Selvicoltura speciale. Turin: UTET.Google Scholar
  5. Böhm, R., P.D. Jones, J. Hiebl, D. Frank, M. Brunetti, and M. Maugeri. 2010. The early instrumental warm-bias: A solution for long central European temperature series 1760–2007. Climatic Change 101: 41–67.CrossRefGoogle Scholar
  6. Brockmann-Jerosch, H. 1919. Baumgrenze und Klimacharakter. Rascher: Zürich.Google Scholar
  7. Brunetti, M., M. Maugeri, F. Monti, and T. Nanni. 2006. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology 26: 345–381.CrossRefGoogle Scholar
  8. Burga, C.A. 1991. Vegetation history and palaeoclimatology of the Middle Holocene: Pollen analysis of alpine peat bog sediments, covered formerly by the Rutor Glacier, 2510 m (Aosta Valley, Italy). Global Ecology and Biogeography Letters 1: 43–150.CrossRefGoogle Scholar
  9. Butler, D.R., G.P. Malanson, L.M. Resler, S.J. Walsh, F.D. Wilkerson, G.L. Schmid, and C.F. Sawyer. 2009. Geomorphic patterns and processes at alpine treeline. In The changing alpine treeline, vol. 12, ed. D. Butler, G. Malanson, S. Walsh, S. Fagre, 63–84. Amsterdam: Elsevier.Google Scholar
  10. Caccianiga, M., C. Andreis, S. Armiraglio, G. Leonelli, M. Pelfini, and D. Sala. 2008. Climate continentality and treeline species distribution in the Alps. Plant Biosystems 142: 66–78.Google Scholar
  11. Chauchard, S., F. Beilhe, N. Denis, and C. Carcaillet. 2010. An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: A land-use change phenomenon. Forest Ecology and Management 259: 1406–1415.CrossRefGoogle Scholar
  12. David, F. 1995. Vegetation dynamics in the northern French Alps. Historical Biology 9: 269–295.CrossRefGoogle Scholar
  13. Dirnböck, T., S. Dullinger, and G. Grabherr. 2003. A regional impact assessment of climate and land use change on alpine vegetation. Journal of Biogeography 30: 401–417.CrossRefGoogle Scholar
  14. Defila, C., and B. Clot. 2005. Phytophenological trends in the Swiss Alps, 1951–2002. Meteorologische Zeitschrift 14: 191–196.CrossRefGoogle Scholar
  15. Ellenberg, H. 1963. Vegetation Mitteleuropas mit den Alpen. In Kausaler, dynamischer und historischer Sicht. Stuttgart: Ulmer.Google Scholar
  16. Ellenberg, H. 1978. Vegetation Mitteleuropas mit den Alpen. Stuttgart: Auflage.Google Scholar
  17. Friedel, H. 1967. Verlauf der alpinen Waldgrenze im Rahmen anliegender Gebirgsgelände. Mitt. Forstl. Bundes-Versuchsanstalt Mariabrunn 75: 81–172.Google Scholar
  18. Gehrig-Fasel, J., A. Guisan, and N. Zimmermann. 2007. Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science 18: 571–582.CrossRefGoogle Scholar
  19. Haeberli, W., and S. Gruber. 2009. Global Warming and mountain permafrost. In Permafrost soils, ed. R. Margesin, 205–218. New York: Springer.Google Scholar
  20. Hansen, J., M. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina-Elizade. 2006. Global temperature change. Proceedings of the National Academy of Sciences of the United States of America 103: 14288–14293.CrossRefGoogle Scholar
  21. Hantel, M., and L.-M. Hirtl-Wielke. 2007. Sensitivity of Alpine snow cover to European temperature. International Journal of Climatology 27: 1265–1275.CrossRefGoogle Scholar
  22. Holtmeier, F.K. 2009. Mountain timberlines: Ecology, patchiness and dynamics, 438 pp. New York: Springer.Google Scholar
  23. Klasner, F.L. 2002. A half century of change in Alpine patterns at Glacier National Park, Montana, U.S.A. Arctic, Antarctic, and Alpine Research 34: 49–56.CrossRefGoogle Scholar
  24. Körner C. 2003. Alpine plant life, 344 pp. New York: Springer.Google Scholar
  25. Körner, C., and J. Paulsen. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713–732.CrossRefGoogle Scholar
  26. Kullman, L. 2010. A richer, greener and smaller alpine world: Review and projection of warming-induced plant cover change in the Swedish Scandes. Ambio 39: 159–169.CrossRefGoogle Scholar
  27. Kullman, L., and L. Kjällgren. 2006. Holocene pine tree-line evolution in the Swedish Scandes: Recent tree-line rise and climate change in a long-term perspective. Boreas 35: 159–168.CrossRefGoogle Scholar
  28. Kullman, L., and L. Öberg. 2009. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. Journal of Ecology 97: 415–429.CrossRefGoogle Scholar
  29. Leonelli, G., M. Pelfini, and U. Morra di Cella. 2009. Detecting climatic treelines in the Italian Alps: The influence of geomorphological factors and of human impacts. Physical Geography 30: 338–352.CrossRefGoogle Scholar
  30. Luckman, B., and T. Kavanagh. 2000. Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio 29: 371–380.Google Scholar
  31. Mazepa, V.S. 2005. Stand density in the last millennium at the upper tree-line ecotone in the polar Ural Mountains. Canadian Journal of Forest Research 35: 2082–2091.CrossRefGoogle Scholar
  32. Mercalli, L., D. Cat Berro, and S. Montuschi. 2003. Atlante climatico della Valle d’Aosta, 416 pp. Turin: Società Meteorologica Subalpina.Google Scholar
  33. Moen, J., K. Aune, L. Edenius, and A. Angerbjörn. 2004. Potential effects of climate change on treeline position in the Swedish mountains. Ecology and Society 9: 16.Google Scholar
  34. Motta, R., and P. Nola. 2001. Growth trends and dynamics in sub-alpine forest stands in the Varaita valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetation Science 12: 219–230.CrossRefGoogle Scholar
  35. Paul, F., A. Kääb, M. Maisch, T. Kellenberger, and W. Haeberli. 2004. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters 31: L21402. doi: 10.1029/2004GL020816.CrossRefGoogle Scholar
  36. Pauli, H., M. Gottfried, and G. Grabherr. 2003. Effects of climate change on the alpine and nival vegetation of the Alps. Journal of Mountain Ecology 7: 9–12.Google Scholar
  37. Porter, S.C., and G. Orombelli. 1985. Glacier contraction during the middle Holocene in the western Italian Alps: Evidence and implications. Geology 13: 296–298.CrossRefGoogle Scholar
  38. Rebetez, M., and M. Reinhard. 2008. Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theoretical and Applied Climatology 91: 27–34.CrossRefGoogle Scholar
  39. Santilli, M., G. Orombelli, and M. Pelfini. 2002. The variation of Italian Glaciers between 1980 and 1999 inferred by the data supplied by the Italian Glaciological Committee. Geografia Fisica Dinamica Quaternaria 25: 61–76.Google Scholar
  40. Shiyatov, S.G., M.M. Terent’ev, and V.V. Fomin. 2005. Spatiotemporal dynamics of forest-tundra communities in the polar Urals. Russian Journal of Ecology 36: 69–75.CrossRefGoogle Scholar
  41. Stevens, G.C., and J.F. Fox. 1991. The causes of treeline. Annual Review of Ecology and Systematics 22: 177–191.CrossRefGoogle Scholar
  42. Theurillat, J.P., and A. Guisan. 2001. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change 50: 77–109.CrossRefGoogle Scholar
  43. Tranquillini, W. 1979. Physiological ecology of the alpine treeline. New York: Springer.Google Scholar
  44. Vittoz, P., B. Rulence, T. Largey, and F. Freléchoux. 2008. Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research 40: 225–232.CrossRefGoogle Scholar
  45. Walther, G.R., S. Beissner, and C.A. Burga. 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science 16: 541–548.CrossRefGoogle Scholar
  46. Wegmüller, S. 1977. Pollenanalytische Untersuchungen zur spät und postglazialen Vegetationgeschichte der Französischen Alpen (Dauphiné). Bern: Paul Haupt.Google Scholar
  47. Wood, F. 1988. Global alpine glacier trends 1960s to 1980. Arctic, Antarctic, and Alpine Research 20: 404–413.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  • Giovanni Leonelli
    • 1
  • Manuela Pelfini
    • 1
  • Umberto Morra di Cella
    • 2
  • Valentina Garavaglia
    • 1
  1. 1.Department of Earth SciencesUniversity of MilanMilanItaly
  2. 2.ARPA Valle d’AostaSaint ChristopheItaly

Personalised recommendations