Advertisement

AMBIO

, Volume 39, Issue 5–6, pp 402–412 | Cite as

A Carbon Cycle Science Update Since IPCC AR-4

  • A. J. Dolman
  • G. R. van der Werf
  • M. K. van der Molen
  • G. Ganssen
  • J.-W. Erisman
  • B. Strengers
Report

Abstract

We review important advances in our understanding of the global carbon cycle since the publication of the IPCC AR4. We conclude that: the anthropogenic emissions of CO2 due to fossil fuel burning have increased up through 2008 at a rate near to the high end of the IPCC emission scenarios; there are contradictory analyses whether an increase in atmospheric fraction, that might indicate a declining sink strength of ocean and/or land, exists; methane emissions are increasing, possibly through enhanced natural emission from northern wetland, methane emissions from dry plants are negligible; old-growth forest take up more carbon than expected from ecological equilibrium reasoning; tropical forest also take up more carbon than previously thought, however, for the global budget to balance, this would imply a smaller uptake in the northern forest; the exchange fluxes between the atmosphere and ocean are increasingly better understood and bottom up and observation-based top down estimates are getting closer to each other; the North Atlantic and Southern ocean take up less CO2, but it is unclear whether this is part of the ‘natural’ decadal scale variability; large-scale fires and droughts, for instance in Amazonia, but also at Northern latitudes, have lead to significant decreases in carbon uptake on annual timescales; the extra uptake of CO2 stimulated by increased N-deposition is, from a greenhouse gas forcing perspective, counterbalanced by the related additional N2O emissions; the amount of carbon stored in permafrost areas appears much (two times) larger than previously thought; preservation of existing marine ecosystems could require a CO2 stabilization as low as 450 ppm; Dynamic Vegetation Models show a wide divergence for future carbon trajectories, uncertainty in the process description, lack of understanding of the CO2 fertilization effect and nitrogen–carbon interaction are major uncertainties.

Keywords

Global carbon cycle Terrestrial uptake Ocean acidification Carbon budgets Carbon-climate feedback 

Notes

Acknowledgements

AJD and MKvM were partly supported by the EU FP7 project Coordination action Carbon Observation System (COCOS, Grant Agreement number 212196). This article is an outcome of a request from the Dutch Government to provide an update on Climate Science for the Copenhagen COP XV meeting in December 2009. We thank Rob van Dorland and Leo Meijer for agreement to publish this article.

References

  1. Boer, G.J., and V. Arora. 2009. Temperature and concentration feedbacks in the carbon cycle. Geophysical Research Letters 36: L02704. doi: 10.1029/2008GL036220.CrossRefGoogle Scholar
  2. Bonan, G.B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320: 1444–1449. doi: 10.1126/science.1155121.Google Scholar
  3. Bousquet, P., P. Ciais, J.B. Miller, E.J. Dlugokencky, D.A. Hauglustaine, C. Prigent, G.R. Van der Werf, P. Peylin, E-G. Brunke, C. Carouge, R.K. Langenfelds, J. Lathiere, F. Papa, M. Ramonet, M. Schmidt, L.P. Steele, S.C. Tyler, and J. White. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439–443. doi: 10.1038/nature05132.Google Scholar
  4. Bowman, D., J. Balch, P. Artaxo, W. Bond, J. Carlson, M. Cochrane, et al. 2009. Fire in the earth system. Science 324(5926): 481–484.CrossRefGoogle Scholar
  5. Canadell, J., C. Le Quéré, M. Raupach, C. Field, E. Buitenhuis, P. Ciais, et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104(47): 18866.CrossRefGoogle Scholar
  6. Cao, L., and K. Caldeira. 2008. Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters 35(19): L19609.CrossRefGoogle Scholar
  7. Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.CrossRefGoogle Scholar
  8. Ciais, P., M. Schelhaas, S. Zaehle, S. Piao, A. Cescatti, J. Liski, et al. 2008. Carbon accumulation in European forests. Nature Geoscience 1(7): 425–429.CrossRefGoogle Scholar
  9. Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P.L. da Silva Dias, S.C. Wofsy, and X. Zhang. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, and H.L. Miller. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
  10. Dentener, F., J. Drevet, J.F. Lamarque, I. Bey, B. Eickhout, A.M. Fiore, D. Hauglustaine, L.W. Horowitz, M. Krol, U.C. Kulshrestha, M. Lawrence, C. Galy-Lacaux, S. Rast, D. Shindell, D. Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T. Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J. Galloway, M. Gauss, V. Montanaro, J.F. Müller, G. Pitari, J. Rodriguez, M. Sanderson, S. Strahan, M. Schultz, F. Solmon, K. Sudo, S. Szopa, and O. Wild. 2006. Nitrogen and sulphur deposition on regional and global scales: a multi-model evaluation. Global Biogeochemical Cycles 20: GB4003. doi: 10.1029/2005GB002672.
  11. Dorrepaal, E., S. Toet, R.S.P. van Logtestijn, E. Swart, M.J. van de Weg, T.V. Callaghan, and R. Aerts. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460: 616–619. doi: 10.1038/nature08216.Google Scholar
  12. Dueck, T., R. de Visser, H. Poorter, S. Persijn, A. Gorissen, W. de Visser, et al. 2007. No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytologist 175(1): 29–35.CrossRefGoogle Scholar
  13. Erisman, J.W., J.A. Galloway, M.S. Sutton, Z. Klimont, and W. Winiwater. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1: 636–639.CrossRefGoogle Scholar
  14. Fabry, V., B. Seibel, R. Feely, and J. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65(3): 414.CrossRefGoogle Scholar
  15. Field, R., G. Werf, and S. Shen. 2009. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geoscience 2(3): 1–4.CrossRefGoogle Scholar
  16. Fischer, H., M. Behrens, M. Bock, U. Richter, J. Schmitt, L. Loulergue, et al. 2008. Changing boreal methane sources and constant biomass burning during the last termination. Nature 452(7189): 864–867.CrossRefGoogle Scholar
  17. Frankenberg, C., P. Bergamaschi, A. Butz, S. Houweling, J. Meirink, and J. Notholt et al. (2008). Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophysical Research Lettters 35. doi: 10.1029/2008GL034300.
  18. Friedlingstein, P., et al. 2006. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate 19: 3337–3353.CrossRefGoogle Scholar
  19. Galloway, J., A. Townsend, J. Erisman, M. Bekunda, Z. Cai, J. Freney, et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320(5878): 889.CrossRefGoogle Scholar
  20. Gregg, J.S., R.J. Andres, and G. Marland. 2008. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters 35: L08806. doi: 10.1029/2007GL032887.
  21. Gruber, N. 2009. Carbon cycle Fickle trends in the ocean. Nature 458(7235): 155–156.CrossRefGoogle Scholar
  22. Gruber, N., M. Gloor, S. Mikaloff Fletcher, S. Doney, S. Dutkiewicz, M. Follows, et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles 23(1): 1–21.CrossRefGoogle Scholar
  23. IPCC. 2000. Special Report on Emission Scenarios (SRES). http://www.ipcc.ch/ipccreports/sres/emission/index.htm.
  24. Janssens, I.V., and S. Luyssaert. 2009. Carbon cycle: Nitrogen’s carbon bonus. Nature Geoscience 2: 318–319. doi: 10.1038/ngeo505.Google Scholar
  25. Janssens, I.A., W. Dieleman, S. Luyssaert, J.-A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A.J. Dolman, J. Grace, G. Matteucci, D. Papale, S. L. Piao, E.-D. Schulze, J. Tang, and B.E. Law. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosciences 315–322. doi: 10.1038/ngeo844.
  26. Janssens, I.A., A. Freibauer, P. Ciais, et al. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300: 1538–1542. doi: 10.1126/science.1083592.CrossRefGoogle Scholar
  27. Keppler, F., J.T.G. Hamilton, M. Braß, and T. Roeckmann. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073): 187–191.CrossRefGoogle Scholar
  28. Knorr, W. 2009. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophysical Research Letters 36: L21710. doi: 10.1029/2009GL040613.CrossRefGoogle Scholar
  29. le Quéré, C., M.R. Raupach, J.G. Canadell, G. Marland, L. Bopp, P. Ciais, T.J. Conway, S.C. Doney, R. Feely, P. Foster, P. Friedlingstein, K. Gurney, R.A. Houghton, J.I. House, C. Huntingford, P.E. Levy, M.R. Lomas, J. Majkut, N. Metzl, J.P. Ometto, G.P. Peters, I.C. Prentice, J.T. Randerson, S.W. Running, J.L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G.R. van der Werf, and F.I. Woodward. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geosciences 2: 831–836. doi: 10.1038/ngeo689.CrossRefGoogle Scholar
  30. le Quéré, C., C. Rodenbeck, E. Buitenhuis, T. Conway, R. Langenfelds, A. Gomez, et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832): 1735–1738.CrossRefGoogle Scholar
  31. le Quéré, C., C. Rodenbeck, E. Buitenhuis, T. Conway, R. Langenfelds, A. Gomez, et al. 2008. Response to comments on “Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change”. Science 319(5863): 570c.CrossRefGoogle Scholar
  32. Lewis, S., G. Lopez-Gonzalez, B. Sonké, K. Affum-Baffoe, T. Baker, L. Ojo, et al. 2009. Increasing carbon storage in intact African tropical forests. Nature 457(7232): 1003–1006.CrossRefGoogle Scholar
  33. Li, W.H. et al. 2007. Future precipitation changes and their implications for tropical peatlands. Geophysical Research Letters 34. doi: 10.1029/2006GL028364.
  34. Luyssaert, S., E.-D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B. Law, et al. 2008. Old-growth forests as global carbon sinks. Nature 455(7210): 213–215.CrossRefGoogle Scholar
  35. Magnani, F., M. Mencuccini, M. Borghetti, P. Berbigier, F. Berninger, S. Delzon, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 849–851.CrossRefGoogle Scholar
  36. Marquis, M., and P. Tans. 2008. Carbon crucible. Science 320: 460–461. doi: 10.1126/science.1156451.Google Scholar
  37. Meinshausen, M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen. 2009. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458: 1158–1162. doi: 10.1038/nature08017.Google Scholar
  38. Mercado, L., N. Bellouin, S. Sitch, and O. Boucher. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458: 1014–1018.CrossRefGoogle Scholar
  39. Mikaloff Fletcher, S., N. Gruber, A. Jacobson, M. Gloor, S. Doney, S. Dutkiewicz, et al. 2007. Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochemical Cycles 21(1): 1–19.CrossRefGoogle Scholar
  40. Nepstad, D., and C. Stickler. 2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1498): 1737.CrossRefGoogle Scholar
  41. O’ishi, R., A. Abe-Ouchi, I.C. Prentice, and S. Sitch. 2009. Vegetation dynamics and plant CO2 responses as positive feedbacks in a greenhouse world. Geophysical Research Letters 36: L11706. doi: 10.1029/2009GL038217.CrossRefGoogle Scholar
  42. Pacala, S.W., G.C. Hurtt, D. Baker, et al. 2001. Carbon sink estimates consistent land- and atmosphere-based U.S. Science 292: 2316–2320. doi: 10.1126/science.1057320.CrossRefGoogle Scholar
  43. Peters, W., A. Jacobson, C. Sweeney, A. Andrews, T. Conway, K. Masarie, et al. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences 104(48): 18925.CrossRefGoogle Scholar
  44. Petrescu, A.M. R., L.P.H. van Beek, J. van Huissteden, C. Prigent, T. Sachs, C.A.R. Corradi, F.J.W. Parmentier, and A.J. Dolman. 2010. Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochemical Cycles. doi: 10.1029/2009GB003610.
  45. Phillips, O., S.L. Lewis, T.R. Baker, K.-J. Chao, and N. Higuchi. 2008. The changing Amazon forest. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1819–1827.Google Scholar
  46. Phillips, O., L. Aragao, S. Lewis, J. Fisher, J. Lloyd, G. Lopez-Gonzalez, et al. 2009. Drought sensitivity of the amazon rainforest. Science 323(5919): 1344.CrossRefGoogle Scholar
  47. Piao, S., J. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, et al. 2009a. The carbon balance of terrestrial ecosystems in China. Nature 458(7241): 1009–1013.CrossRefGoogle Scholar
  48. Piao, S., P. Friedlingstein, P. Ciais, P. Peylin, B. Zhu, and M. Reichstein. 2009b. Footprint of temperature changes in the temperate and boreal forest carbon balance. Geophysical Research Letters 36(7): 1–5.CrossRefGoogle Scholar
  49. Raupach, M., G. Marland, P. Ciais, C. Le Quéré, J. Canadell, G. Klepper, et al. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 104(24): 10288.CrossRefGoogle Scholar
  50. Reay, D., F. Dentener, P. Smith, J. Grace, and R. Feely. 2008. Global nitrogen deposition and carbon sinks. Nature Geoscience 1: 430–437.CrossRefGoogle Scholar
  51. Rigby, M., R.G. Prinn, P.J. Fraser, P.G. Simmonds, R.L. Langenfelds, J. Huang, D.M. Cunnold, L.P. Steele, P.B. Krummel, R.F. Weiss, S. O’Doherty, P.K. Salameh, H.J. Wang, C.M. Harth, J. Muehle, and L.W. Porter. 2008. Renewed growth of atmospheric methane. Geophysical Research Letters 35: L22805. doi: 10.1029/2008GL036037.
  52. Ringeval, B., N. de Noblet‐Ducoudré, P. Ciais, P. Bousquet, C. Prigent, F. Papa, and W.B. Rossow. 2010. An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochemical Cycles 24: GB2003. doi: 10.1029/2008GB00335.CrossRefGoogle Scholar
  53. Schulze, E-D., P. Ciais, S. Luysaert, A. Freibauer, I.A. Janssens, J.F. Sousanna, P. Smith, J. Grace, I. Levin, Thiruchittampalam, M. Heimann, A.J. Dolman, R. Valentini, P. Bousquet, P. Peylin, W. Peters, C. Roedenbeck, G. Etiope, N. Vuichard, M. Wattenbach, G.J. Nabuurs, Z. Poussi, J. Nieschulze, J.H.C Gash, and the CarboEurope Team. 2009. Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nature Geoscience 22. doi: 10.1038/NGEO686.
  54. Schuster, U., and A. Watson. 2007. A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research 112.  10.1029/2006JC003941.
  55. Schuur, E., J. Vogel, K. Crummer, H. Lee, J. Sickman, and T. Osterkamp. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246): 556–559.CrossRefGoogle Scholar
  56. Silverman, J., B. Lazar, L. Cao, K. Caldeira, and J. Erez. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36. doi: 10.1029/2008GL036282.
  57. Sitch, S., C. Huntingford, N. Gedney, P. Levy, M. Lomas, S. Piao, et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14(9): 2015–2039.CrossRefGoogle Scholar
  58. Sokolov, A., D. Kicklighter, J. Melillo, B. Felzer, C. Schlosser, and T. Cronin. 2008. Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21(15): 3776–3796.CrossRefGoogle Scholar
  59. Stephens, B., K. Gurney, P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, et al. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316(5832): 1732.CrossRefGoogle Scholar
  60. Takahashi, T., S.C. Sutherland, and A. Kozyear. 2008. Global ocean surface water partial pressure of CO2 database: Measurements performed during 1968–2006 (Version 1.0). ORNL/CDIAC-152, NDP-088. Carbon dioxide information analysis center, pp. 20. Oak Ridge: Oak Ridge National Laboratory, U. S. Department of Energy.Google Scholar
  61. Tarnocai, C., J.G. Canadell, E.A.G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23: GB2023. doi: 10.1029/2008GB003327.CrossRefGoogle Scholar
  62. Thomas, H., A. Prowe, I. Lima, S. Doney et al. 2008. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Global Biogeochemical Cycles 22.  10.1029/2007GB003167.
  63. Thornton, P., J.-F. Lamarque, N. Rosenbloom, and N. Mahowald. 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21(4): 1–15.CrossRefGoogle Scholar
  64. van der Werf, G.R., D.C. Morton, R.S. DeFries, J.G.J. Olivier, P.S. Kasibhatla, R.B. Jackson, G.J. Collatz, and J.T. Randerson. 2009. CO2 emissions from forest loss. Nature Geoscience 2: 737–738. doi: 10.1038/ngeo671.Google Scholar
  65. van Vuuren, D., and K. Riahi. 2008. Do recent emission trends imply higher emissions forever? Climatic Change 91(3): 237–248.CrossRefGoogle Scholar
  66. Vries, W., S. Solberg, M. Dobbertin, H. Sterba, D. Laubhahn, G. Reinds, et al. 2008. Ecologically implausible carbon response? Nature 451(7180): E1–E12.CrossRefGoogle Scholar
  67. Werf, G., J. Dempewolf, S. Trigg, J. Randerson, P. Kasibhatla, L. Giglio, et al. 2008. Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences 105(51): 20350–20355.CrossRefGoogle Scholar
  68. Xu-Ri, and I. Prentice. 2008. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology 14(8): 1745–1764.Google Scholar
  69. Zickfeld, K., J. Fyfe, M. Eby, and A. Weaver. 2008. Comment on “Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change”. Science 319(5863): 570b–570b.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  • A. J. Dolman
    • 1
  • G. R. van der Werf
    • 1
  • M. K. van der Molen
    • 1
  • G. Ganssen
    • 1
  • J.-W. Erisman
    • 1
  • B. Strengers
    • 2
  1. 1.Department of Earth SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands

Personalised recommendations