AMBIO

, Volume 39, Issue 8, pp 555–566 | Cite as

Environmental Services Provided from Riparian Forests in the Nordic Countries

  • Per Gundersen
  • Ari Laurén
  • Leena Finér
  • Eva Ring
  • Harri Koivusalo
  • Magne Sætersdal
  • Jan-Olov Weslien
  • Bjarni D. Sigurdsson
  • Lars Högbom
  • Jukka Laine
  • Karin Hansen
Report

Abstract

Riparian forests (RF) growing along streams, rivers and lakes comprise more than 2% of the forest area in the Nordic countries (considering a 10 m wide zone from the water body). They have special ecological functions in the landscape. They receive water and nutrients from the upslope areas, are important habitats for biodiversity, have large soil carbon stores, but may emit more greenhouse gases (GHG) than the uplands. In this article, we present a review of the environmental services related to water protection, terrestrial biodiversity, carbon storage and greenhouse gas dynamics provided by RF in the Nordic countries. We discuss the benefits and trade-offs when leaving the RF as a buffer against the impacts from upland forest management, in particular the impacts of clear cutting. Forest buffers are effective in protecting water quality and aquatic life, and have positive effects on terrestrial biodiversity, particularly when broader than 40 m, whereas the effect on the greenhouse gas exchange is unclear.

Keywords

Biodiversity Greenhouse gas exchange Riparian forest buffer Surface water quality Clear cutting 

Notes

Acknowledgement

This article is the result of an activity in the Centre of Advanced Research on Environmental Services (CAR-ES—Project number SNS-CAR 02/2005) supported by the Nordic Council of Ministers through SamNordisk Skogforskning (SNS). The study was also in part supported by national funds: the Swedish contribution through the multi-disciplinary research programme ‘Future Forests’; the Norwegian contribution by the project ‘Biodiversity in Norwegian Forests’ financed by the Norwegian Ministry of Agriculture and Food; and the Icelandic contribution by the ForStreams project.

References

  1. Ågren, A., I. Buffam, M. Berggren, K. Bishop, M. Jansson, and H. Laudon. 2008. Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. Journal of Geophysical Research 113: G03031. doi: 10.1029/2007JG000674.CrossRefGoogle Scholar
  2. Ahtiainen, M., and P. Huttunen. 1999. Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environmental Research 4: 101–114.Google Scholar
  3. Andréassian, V. 2004. Waters and forests: From historical controversy to scientific debate. Journal of Hydrology 291: 1–27.CrossRefGoogle Scholar
  4. Angelstam, P. 1998. Maintaining and restoring biodiversity by developing natural disturbance regimes in European boreal forest. Journal of Vegetation Science 9: 593–602.CrossRefGoogle Scholar
  5. Åström, M., M. Dynesius, K. Hylander, and C. Nilsson. 2007. Slope aspect modifies community responses to clear-cutting in boreal forests. Ecology 88: 749–758.CrossRefGoogle Scholar
  6. Binkley, D., H. Burnham, and H.L. Allen. 1999. Water quality impacts of forest fertilization with nitrogen and phosphorus. Forest Ecology and Management 121: 191–213.CrossRefGoogle Scholar
  7. Bishop, K., C. Allan, L. Bringmark, E. Garcia, S. Hellsten, L. Högbom, K. Johansson, A. Lomander, M. Meili, J. Munthe, M. Nilsson, P. Porvari, U. Skyllberg, R. Sørensen, T. Zetterberg, and S. Åkerblom. 2009. The effects of forestry on Hg bioaccumulation in nemoral/boreal waters and recommendations for good silvicultural practice. Ambio 38: 373–380.CrossRefGoogle Scholar
  8. Broadmeadow, S., and T.R. Nisbet. 2004. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrology and Earth System Sciences 8: 286–305.CrossRefGoogle Scholar
  9. Christiansen, J.R., P. Gundersen, and L. Vesterdal. In review. Nitrous oxide and methane fluxes in two small temperate forest catchments—upscaling based on hydrological gradients. Biogeochemistry.Google Scholar
  10. Cirmo, C.P., and J.J. McDonnel. 1997. Linking hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: A review. Journal of Hydrology 199: 88–120.CrossRefGoogle Scholar
  11. Darveau, M., P. Beauchesne, L. Belanger, J. Huot, and P. LaRue. 1995. Riparian forest strips as habitat for breeding birds in boreal forest. Journal of Wildlife Management 59: 67–78.CrossRefGoogle Scholar
  12. Dixon, R.K., A.M. Solomon, S. Brown, R.A. Houghton, M.C. Trexier, and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185–190.CrossRefGoogle Scholar
  13. Dynesius, M., K. Hylander, and C. Nilsson. 2009. High resilience of bryophyte assemblages in stream-side compared to upland forests. Ecology 90: 1042–1054.CrossRefGoogle Scholar
  14. Eglin, T., C. Walter, C. Nys, S. Follain, F. Forgeard, A. Legout, and H. Squividant. 2008. Influence of waterlogging on carbon stock variability at hillslope scale in a beech forest (Fougères forest—West France). Annals of Forest Science 65: 202p1–202p10.CrossRefGoogle Scholar
  15. Fiedler, S., B.S. Höll, and H.F. Jungkunst. 2005. Methane budget of a Black Forest spruce ecosystem considering soil pattern. Biogeochemistry 76: 1–20.CrossRefGoogle Scholar
  16. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, and H.L. Miller. Cambridge: Cambridge University Press.Google Scholar
  17. Friberg, N. 1997. Benthic invertebrate communities in six Danish forest streams: Impact of forest type on structure and function. Ecography 20: 19–28.CrossRefGoogle Scholar
  18. Giesler, R., T. Petersson, and P. Högberg. 2002. Phosphorus limitation in boreal forests: Effects of aluminium and iron accumulation in the humus layer. Ecosystems 5: 300–314.CrossRefGoogle Scholar
  19. Grip, H. 1982. Water chemistry and runoff in forest streams in Kloten. UNGI Report 58. Division of Hydrology, Department of Physical Geography, Uppsala University, 144 p.Google Scholar
  20. Grizzel, J.D., and N. Wolff. 1998. Occurrence of windthrow in forest buffer strips and its effect on small streams in Northwest Washington. Northwest Science 72: 214–223.Google Scholar
  21. Gustafsson, L., and L. Hansson. 1987. Corridors as conservation tool. Ecological Bulletins 46: 182–190.Google Scholar
  22. Haag, D. A. 2002. Effects of riparian buffer width on songbirds and forest structure in the southern interior of British Columbia. Thesis from the University of British Columbia, Canada. https://circle.ubc.ca/handle/2429/12910.
  23. Hazlett, P.W., A.M. Gordon, P.K. Sibley, and J.M. Buttle. 2005. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. Forest Ecology and Management 219: 56–68.CrossRefGoogle Scholar
  24. Hylander, K. 2004. Living on the edgeeffectiveness of buffer strips in protecting biodiversity in boreal riparian forests. PhD-thesis, Umeå University, Umeå, Sweden.Google Scholar
  25. Hylander, K. 2005. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. Journal of Applied Ecology 42: 518–525.CrossRefGoogle Scholar
  26. Hylander, K. 2006. Riparian zones increase regional species richness by harboring different, not more, species: Comment. Ecology 87: 2126–2128.CrossRefGoogle Scholar
  27. Hylander, K., C. Nilsson, and T. Göthner. 2004. Effects of buffer-strip retention and clearcutting on land snails in boreal riparian forests. Conservation Biology 18: 1052–1062.CrossRefGoogle Scholar
  28. Jacks, G., and A.C. Norrström. 2004. Hydrochemistry and hydrology of forest riparian wetlands. Forest Ecology and Management 196: 187–197.CrossRefGoogle Scholar
  29. Järvelä, J. 2002a. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. Journal of Hydrology 269: 44–54.CrossRefGoogle Scholar
  30. Järvelä, J. 2002b. Determination of flow resistance of vegetated channel banks and floodplains. In River flow, ed. D. Bousmar and Y. Zech, 311–318. Lisse: Swets & Zeitlinger.Google Scholar
  31. Jensen, M.B., H.C.B. Hansen, N.E. Nielsen, and J. Magid. 1999. Phosphate leaching from intact soil column in response to reducing conditions. Water, Air, and Soil pollution 113: 411–423.CrossRefGoogle Scholar
  32. Jungkunst, H.F., and S. Fiedler. 2007. Latitudinal differentiated water table control on greenhouse gases feedbacks from hydromorphic soils to climate change. Global Change Biology 13: 2668–2683.CrossRefGoogle Scholar
  33. Jungkunst, H.F., S. Fiedler, and K. Stahr. 2004. N2O emissions of a mature Norway spruce (Picea abies) stand in the Black Forest (SW Germany) as differentiated by the soil pattern. Journal of Geophysical Research 109: D07302.CrossRefGoogle Scholar
  34. Jungkunst, H.F., H. Flessa, C. Scherber, and S. Fiedler. 2008. Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biology and Biochemistry 40: 2047–2054.CrossRefGoogle Scholar
  35. Kokkonen, T., H. Koivusalo, A. Laurén, S. Penttinen, S. Piirainen, M. Starr, S. Kellomäki, and L. Finér. 2006. Implications of processing spatial data from a forested catchment for a hillslope hydrological model. Ecological Modelling 199: 393–408.CrossRefGoogle Scholar
  36. Komonen, A. 2009. Forest characteristics and their variation along the lakeshore-upland ecotone. Scandinavian Journal of Forest Research 24: 515–526CrossRefGoogle Scholar
  37. Komonen, A., M.E. Niemi, and K. Junninen. 2008. Lakeside riparian forests support diversity of wood fungi in managed boreal forests. Canadian Journal of Forest Research 38: 2650–2659.CrossRefGoogle Scholar
  38. Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, et al. 1996. Effect of water-level drawdown on global climate warming: Northern peatlands. Ambio 25: 179–184.Google Scholar
  39. Laurén, A., L. Finér, H. Koivusalo, T. Kokkonen, T. Karvonen, S. Kellomäki, H. Mannerkoski, and M. Ahtiainen. 2005. Water and nitrogen processes along a typical water flowpath and streamwater exports from a forested catchment and changes after clear-cutting: A modelling study. Hydrology and Earth System Sciences 9 (6): 657–674.CrossRefGoogle Scholar
  40. Laurén, A., J. Heinonen, H. Koivusalo, S. Sarkkola, S. Tattari, T. Mattsson, M. Ahtiainen, S. Joensuu, T. Kokkonen, and L. Finér. 2009. Implications of uncertainty in pre-treatment dataset on estimation of treatment effects from paired catchment studies: loads of phosphorus from forest clear-cuts. Water, Air, and Soil pollution 196: 251–261.CrossRefGoogle Scholar
  41. Lindegren, C. 2006. Kantzonens ekologiska roll i skogliga vattendrag - en litteraturöversikt. Skogsstyrelsen. Rapport 19. http://www.svo.se/forlag/enbok.asp?Produkt=1769
  42. Lindenmayer, D.B., and J.F. Franklin. 2002. Conserving forest biodiversity: A comprehensive multi-scaled approach. Washington, DC: Island Press.Google Scholar
  43. Löfgren, S., E. Ring, C. von Brömssen, R. Sørensen, and L. Högbom. 2009. Short-term effects of clear-cutting on the water chemistry of two boreal streams in northern Sweden: A paired catchment study. Ambio 38: 347–356.CrossRefGoogle Scholar
  44. Luke, S.H., N.J. Luckai, J.M. Burke, and E.E. Prepas. 2007. Riparian areas in the Canadian boreal forest and linkages with water quality in streams. Environmental Reviews 15: 79–97.CrossRefGoogle Scholar
  45. Lundell, Y., and A. Albrektson. 1997. Downslope effects of clear-cutting in Sweden on diameter increment of Picea abies and Pinus sylvestris. Scandinavian Journal of Forest Research 12: 241–247.CrossRefGoogle Scholar
  46. Luyssaert, S., E.-D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B.E. Law, P. Ciais, and J. Grace. 2008. Old-growth forests as global carbon sinks. Nature 455: 213–215.CrossRefGoogle Scholar
  47. Machtans, C.S., M.A. Villard, and S.J. Hannon. 1996. Use of riparian buffer strips as movement corridors by forest birds. Conservation Biology 10: 1366–1379.CrossRefGoogle Scholar
  48. Malanson, G.P. 1993. Riparian landscapes. Cambridge University Press, ISBN 0521384311, 9780521384315, pp. 296.Google Scholar
  49. Maljanen, M., A. Liikanen, J. Silvola, and P.J. Martikainen. 2003. Nitrous oxide emissions from boreal organic soil under different land-use. Soil Biology and Biochemistry 35: 689–700.CrossRefGoogle Scholar
  50. Maljanen, M., B.D. Sigurdsson, J. Guðmundsson, H. Óskarsson, J.T. Huttunen, and P.J. Martikainen. 2009. Land-use and greenhouse gas balances of peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences Discussions 6: 6271–6338.CrossRefGoogle Scholar
  51. Mayer, P.M., S.K. Reynolds, M.D. McMutchen, and T.J. Canfield. 2007. Metaanalysis of nitrogen removal in riparian buffers. Journal of Environment Quality 36: 1172–1180.CrossRefGoogle Scholar
  52. Mosley, E., S.B. Holmes, and E. Nol. 2006. Songbird diversity and movement in upland and riparian habitats in the boreal mixedwood forest of northeastern Ontario. Canadian Journal of Forest Research 36: 1149–1164.CrossRefGoogle Scholar
  53. Niemelä, J. 2001. The utility of movement corridors in forested landscapes. Scandinavian Journal of Forest Research Supplement 3: 70–78.CrossRefGoogle Scholar
  54. Nieminen, M. 2004. Export of dissolved organic carbon, nitrogen and phosphorous following clear-cutting of three Norway spruce forests growing on drained peatlands. Silva Fennica 38 (2): 123–132.Google Scholar
  55. Öckinger, E., and H.G. Smith. 2008. Do corridors promote dispersal in grassland butterflies and other insects? Landscape Ecology 23: 27–40.CrossRefGoogle Scholar
  56. Olsson, M.T., M. Erlandsson, L. Lundin, T. Nilsson, Å. Nilsson, and J. Stendahl. 2009. Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fennica 43: 209–222.Google Scholar
  57. Palviainen, M., L. Finér, A.-M. Kurka, H. Mannerkoski, S. Piirainen, and M. Starr. 2004. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil 263: 53–67.CrossRefGoogle Scholar
  58. Palviainen, M., L. Finér, A. Laurén, H. Mannerkoski, S. Piirainen, and M. Starr. 2007. Development of ground vegetation biomass and nutrient pools in a clear-cut disc-plowed boreal forest. Plant and Soil 297: 43–52.CrossRefGoogle Scholar
  59. Polyakov, V., A. Fares, and M.H. Ryder. 2005. Precision riparian buffers for the control of nonpoint source pollutant loading into surface water: A review. Environmental Review 13: 129–144.CrossRefGoogle Scholar
  60. Regina, K., J. Silvola, and P.J. Martikainen. 1998. Mechanisms of N2O and NO production in the soil profile of drained and forested peatland, as studied with acetylene, nitrapyrin and dimethyl ether. Biology and Fertility of Soil 27: 205–210.CrossRefGoogle Scholar
  61. Ring, E., S. Löfgren, L. Sandin, L. Högbom, W. Goedkoop, I. Bergkvist, and S. Berg. 2008. Skogsbruk med hänsyn till vatten – en handledning från Skogforsk. Skogforsk Handledning, 64 pp.Google Scholar
  62. Saari, P., S. Saarnio, J.V.K. Kukkonen, J. Akkanen, and J. Alm. 2009. Are peatland forestry buffers hot spots of N2O emission? In 9th Finnish Conference of Environmental Sciences, Lahti, 14–15 May 2009, ed. K. Vakkilainen V. and Pukkila, 153–156. Finnish Society for Environmental Sciences. Markprint Oy, Lahti.Google Scholar
  63. Sabater, S., A. Butturini, J.-C. Clement, T. Burt, D. Dowrick, M. Hefting, V. Maître, G. Pinay, C. Postolache, M. Rzepecki, and F. Sabater. 2003. Nitrogen removal by riparian buffers along a European climatic gradient: Patterns and factors of variation. Ecosystems 6: 20–30.CrossRefGoogle Scholar
  64. Sabo, J.L., and C.U. Soykan. 2006. Riparian zones increase regional richness by supporting different, not more, species: Reply. Ecology 87: 2128–2131.CrossRefGoogle Scholar
  65. Sabo, J.L., R. Sponseller, M. Dixon, K. Gade, T. Harms, J. Heffernan, A. Jani, G. Katz, C. Soykan, J. Watts, and J. Welter. 2005. Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86: 56–62.CrossRefGoogle Scholar
  66. Sand-Jensen, K., and P.A. Staehr. 2007. Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems 10: 127–141.CrossRefGoogle Scholar
  67. Shore Length Data Sources, DK: Grünfeld, S., K. Aaen, and T.S. Kirkeby. 2008. Kortlægning af 10 m randzoner langs målsatte og ikke-målsatte vandløb og søer over 100 m² i Danmark. Grontmij | Carl Bro; FI: Kuusisto, E. 2004. Hydrology. In Inland and coastal water of Finland, ed. P. Eloranta, 9–17. Helsinki: University of Helsinki; IS: Central Statistical Bureau Database and Estimated by the Agric. Univ. Iceland GIS Lab.; NO: Forest and Landscape Institute. SE: SkogForsk and for ditches lengt Hånell, B. 1990. Torvtäckta marker, dikning och Sumpskogar I Sverige. Skogsfakta, Inventering och ekonomi nr. 22. Uppsala: Swedish University of Agricultural Sciences. ISSN 0280-7408.Google Scholar
  68. Silvan, N., M. Karsisto, H. Vasander, and J. Laine. 2003. Microbial retention of added nitrogen and phosphorus in constructed wetland buffer. Applied Soil Ecology 24: 143–149.CrossRefGoogle Scholar
  69. Silvan, N., K. Regina, V. Kitunen, H. Vasander, and J. Laine. 2002. Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biology and Biochemistry 34: 721–728.CrossRefGoogle Scholar
  70. Silvan, N., T. Sallantaus, H. Vasander, and J. Laine. 2005. Hydraulic nutrient transport in a restored peatland buffer. Boreal Environment Research 10: 203–210.Google Scholar
  71. Silvan, N., E.-S. Tuittila, H. Vasander, and J. Laine. 2004. Eriophorum vaginatum plays a major role in nutrient retention in boreal peatlands. Annales Botanici Fennici 41: 189–199.Google Scholar
  72. Simberloff, D., and J. Cox. 1987. Consequences and costs of conservation corridors. Conservation Biology 1: 63–71.CrossRefGoogle Scholar
  73. Sørensen, R., E. Ring, M. Meili, L. Högbom, J. Seibert, et al. 2009. Forest harvest increases runoff most during low flows in two boreal streams. Ambio 38: 357–363.CrossRefGoogle Scholar
  74. Stevenson, F.J., and M.A. Cole. 1999. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients (2nd ed.). New York: Wiley, 427 p.Google Scholar
  75. Väänänen, R., M. Nieminen, M. Vuollekoski, and H. Ilvesniemi. 2006. Retention of phosphorus in soil and vegetation of a buffer zone area during snowmelt peak flow in southern Finland. Water, Air, and Soil pollution 177: 103–118.CrossRefGoogle Scholar
  76. Wallace, J.B., S.L. Eggert, J.L. Meyer, and J.R. Webster. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.CrossRefGoogle Scholar
  77. Whitaker, D.M., and W.A. Montevecchi. 1999. Breeding bird assemblages inhabiting riparian buffer strips in Newfoundland, Canada. Journal of Wildlife Management 63: 167–179.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  • Per Gundersen
    • 1
  • Ari Laurén
    • 2
  • Leena Finér
    • 2
  • Eva Ring
    • 3
  • Harri Koivusalo
    • 4
  • Magne Sætersdal
    • 5
  • Jan-Olov Weslien
    • 3
  • Bjarni D. Sigurdsson
    • 6
  • Lars Högbom
    • 3
  • Jukka Laine
    • 7
  • Karin Hansen
    • 1
  1. 1.Department of Forest and Landscape Ecology, Forest and Landscape DenmarkUniversity of CopenhagenHørsholmDenmark
  2. 2.Joensuu Research UnitFinnish Forest Research InstituteJoensuuFinland
  3. 3.Skogforsk Uppsala Science ParkUppsalaSweden
  4. 4.AaltoFinland
  5. 5. Skog og LandskapFanaNorway
  6. 6.Agricultural University of IcelandBorgarnesIceland
  7. 7.Parkano Research UnitFinnish Forest Research InstituteParkanoFinland

Personalised recommendations