Advertisement

AMBIO

, Volume 40, Issue 1, pp 43–51 | Cite as

Lynx Body Size in Norway is Related to its Main Prey (Roe Deer) Density, Climate, and Latitude

  • Yoram Yom-Tov
  • Tor Kvam
  • Øystein Wiig
Report

Abstract

We studied the effect of various factors on body size variation of the Eurasian lynx in Norway, using data from 374 lynx collected between 1960 and 1976 and whose locality of capture, year of birth, sex, and age were known. Body size of lynx in Norway was mainly affected by sex and age. Female skull size (and by implication body size) was also positively affected by the availability of its main prey (roe deer) and by latitude, and negatively by the North Atlantic Oscillation (NAO). Male size was not affected by any of the environmental factors examined. We interpret the effects of NAO and latitude on body size through their effect on the local climate and particularly snow conditions. We suggest that females are more sensitive to environmental factors than males.

Keywords

Eurasian lynx Norway Roe deer Capreolus capreolus NAO Latitude 

Notes

Acknowledgements

This study would not have been possible without the hunters who provided the lynx carcasses. We are grateful to Eli Geffen for statistical advice and to Naomi Paz for editing the manuscript. The North Atlantic Oscillation data were provided by the Climate Research Unit database at the University of East Anglia.

References

  1. Andersen, T., and Ø. Wiig. 1984. Growth of the skull of Norwegian lynx. Acta Theriologica 29: 89–110.Google Scholar
  2. Anonymous. 2003. Resssursregnskap for reindriftsnæringen. For reindriftsåret 1 april 2001–31 mars 2002. Alta: Reindriftsforvaltningen, 138.Google Scholar
  3. Anonymous 2009. Resssursregnskap for reindriftsnæringen. For reindriftsåret 1 april 2001–31 mars 2008. Alta: Reindriftsforvaltningen, 141.Google Scholar
  4. Bolton, B.L., A.E. Newsome, and J. Merchant. 1982. Reproduction in the agile wallaby, Macropus agilis (Gould) in the tropical lowlands of the Northern territory: opportunism in a seasonal environment. Australian Journal of Ecology 7: 261–277.CrossRefGoogle Scholar
  5. Burnham, K.P., and D.R. Anderson. 2001. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28: 111–119.CrossRefGoogle Scholar
  6. Cederlund, G., and O. Liberg. 1995. Rådjuret. Viltet, ekologin och jakten. Sweden: Svenska jägare förbundet.Google Scholar
  7. Central Bureau of Statistics of Norway. 1971. Landbruksteljing 1969. Hefte III Husdyrhald. NOS A 446.Google Scholar
  8. Central Bureau of Statistics of Norway. 1978. Hunting statistics 18461977. Norges offisielle statistikk A 955.Google Scholar
  9. Central Bureau of Statistics of Norway. 1979. Hunting statistics 1978. Norges offisielle statistikk B 44.Google Scholar
  10. Central Bureau of Statistics of Norway. 1980. Hunting statistics 1979. Norges offisielle statistikk B 144.Google Scholar
  11. Central Bureau of Statistics of Norway. 1981. Hunting statistics 1980. Norges offisielle statistikk B 219.Google Scholar
  12. Clutton-Brock, T.H., F.E. Guinness, and S.D. Albon. 1982. Red deer: Behavior and ecology of two sexes. Chicago: University Chicago Press.Google Scholar
  13. Geist, V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65: 1035–1038.CrossRefGoogle Scholar
  14. Grøten, V., B.E. Sæther, S. Engen, E.J. Solberg, J.D.C. Linnell, R. Andersen, H. Brøseth, and E. Lund. 2005. Climate causes large-scale spatial synchrony in population fluctuations of a temperate herbivore. Ecology 86: 1472–1482.CrossRefGoogle Scholar
  15. Gunnarsson, T.G., J.A. Gill, P.W. Atkinson, G. Gélinaud, P.M. Potts, R.E. Croger, G.A. Gudmundsson, G.F. Appleton, and W.J. Sutherland. 2006. Population-scale drivers of individual arrival times in migratory birds. Journal of Animal Ecology 75: 1119–1127.CrossRefGoogle Scholar
  16. Hagen, Y. 1969. Rådyret. In Norges Dyr, 2nd ed. R. Frislid and A. Semb-Johansson (red.). Oslo: J.W. Cappelens Forlag.Google Scholar
  17. Haglund, B. 1966. De stora rovdjurens vintervanor [Winter habits of large carnivores]. Viltrevy 4: 1–311 (in Swedish).Google Scholar
  18. Heggberget, T.M., and S. Myrberget. 1980. The Norwegian lynx population in the 1970s. Fauna Norvegica Series A 1: 29–33.Google Scholar
  19. Hellborg, L., C.W. Walker, E.K. Rueness, J.E. Stacy, I. Kojola, H. Valdmann, C. Vila, B. Zimmermann, K.S. Jakobsen, and H. Ellegren. 2002. Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conservation Genetics 3: 97–111.CrossRefGoogle Scholar
  20. Hersteinsson, P., Y. Yom-Tov, and E. Geffen. 2009. The effect of the Sub-Polar Gyre, North Atlantic Oscillation and ambient temperature on body size variation in the Icelandic Arctic fox. Global Change Biology 15: 1423–1433.CrossRefGoogle Scholar
  21. Johnson, J.B., and K.S. Omland. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19: 101–108.CrossRefGoogle Scholar
  22. Kurtén, B. 1968. Geographic origin of the Scandinavian lynx (Felis lynx L.). Arkiv for Zoologi 20: 505–511.Google Scholar
  23. Kvam, T. 1983. Age determination in European lynx based on cranial development. Fauna Norvegica Series A 4: 31–36.Google Scholar
  24. Kvam, T. 1984. Age determination in European lynx by incremental lines in tooth cementrum. Acta Zoologica Fennica 171: 221–223.Google Scholar
  25. Kvam, T. 1990. Gaupa. In Norges dyr. Pattedyrene, vol. 1, ed. Semb-Johansson, 194–207. Oslo: A. J. W. Cappelens forlag a.s.Google Scholar
  26. Lindström, J. 1999. Early development and fitness in birds and mammals. Trends in Ecology and Evolution 14: 343–348.CrossRefGoogle Scholar
  27. Macdonald, D., and P. Barrett. 1993. Mammals of Britain and Europe. London: HarperCollins.Google Scholar
  28. Madsen, T., and R. Shine. 2000. Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging python. Journal of Animal Ecology 69: 952–958.CrossRefGoogle Scholar
  29. Marra, P.P., C.M. Francis, R.S. Mulvihill, and F.R. Moore. 2005. The influence of climate on the timing and rate of spring bird migration. Oecologia 142: 307–315.CrossRefGoogle Scholar
  30. Mayr, E. 1965. Animal Species and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
  31. Mysterud, A., R. Langvatn, N.G. Yoccoz, and N.C. Stenseth. 2001. Plant phenology, migration and geographic variation in body weight of large herbivore: the effect of a variable topography. Journal of Animal Ecology 70: 915–923.CrossRefGoogle Scholar
  32. Mysterud, A., and E. Østbye. 2006. Effect of climate and density on individual and population growth of roe deer Capreolus capreolus at northern latitudes: the Lier valley, Norway. Wildlife Biology 12: 321–329.CrossRefGoogle Scholar
  33. Mysterud, A., N.C. Stenseth, N.G. Yoccoz, G. Ottersen, and R. Langvatn. 2003. The response of terrestrial ecosystems to climate variability associated with the North Atlantic Oscillation. In The North Atlantic Oscillations. Climatic Significance and Environmental Impact, ed. J.W. Hurrell, A. Belgrano, G. Ottersen, and Y. Kushnir, 235–262. Washington: American Geophysical Union.Google Scholar
  34. Nilsen, E.B., J.D.C. Linnell, J. Odden, and R. Andersen. 2009. Climate, season, and social status modulate the functional response of an efficient stalking predator: the Eurasian lynx. Journal of Animal Ecology 78: 741–751.CrossRefGoogle Scholar
  35. Nowell, K., and P. Jackson. 1995. Wild cats: Status survey and conservation action plan. Gland Switzerland: IUCN.Google Scholar
  36. Odden, J., D.C. Linnell, and R. Andersen. 2006. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low deer density. European Journal of Wildlife Research 52: 237–244.CrossRefGoogle Scholar
  37. Olstad, O. 1945. Jaktzoologi. Oslo: J.W Cappelens forlag.Google Scholar
  38. Ottersen, G., B. Planque, A. Belgrano, E. Post, P.C. Reid, and N.C. Stenseth. 2004. Ecological effects of the North Atlantic Oscillation. Oecologia 128: 1–14.CrossRefGoogle Scholar
  39. Pettorelli, N., J.M. Gaillard, G. Van Laer, P. Duncan, P. Kjellander, O. Liberg, D. Delorme, and D. Maillard. 2002. Density at birth and habitat quality affects adult body mass in roe deer. Proceedings of the Royal Society of London B 269: 747–753.CrossRefGoogle Scholar
  40. Post, E., M.C. Forchhammer, and N.C. Stenseth. 1999. Population ecology and the North Atlantic Oscillation. Ecological Bulletins 47: 117–125.Google Scholar
  41. Raiby, M. 1968. Rådyrets økologi og populasjonsdynamikk. Fauna 21: 21–31.Google Scholar
  42. Reindriftsforvaltningen. 2009. http://www.reindrift.no/?id=157andsubid=0. Accessed 28 December 2009.
  43. Rueness, E.K., P.E. Jorde, L. Hellborg, N.C. Stenseth, and H. Ellegren. 2003. Cryptic population structure in a large, mobile mammalian predator: The Scandinavian lynx. Molecular Ecology 12: 2623–2633.CrossRefGoogle Scholar
  44. Sandell, M. 1989. The mating tactics and spacing patterns of solitary carnivores. In Carnivore behavior, ecology and evolution, ed. J.L. Gittleman, 164–182. London: Chapmann and Hall.Google Scholar
  45. Schmidt, K. 2008. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriologica 53: 1–16.CrossRefGoogle Scholar
  46. Schmidt, K., W. Jedrzejewski, and H. Okarma. 1997. Spatial organization and social relations in the European lynx population in Bialowieza primary forest, Poland. Acta Theriologica 42: 289–312.Google Scholar
  47. Stenseth, N.C., A. Shabbar, K.-S. Chan, S. Boutin, E.K. Rueness, D. Ehrich, J.W. Hurrell, O.C. Lingjærde, and K.S. Jakobsen. 2004. Snow conditions may create an invisible barrier for lynx. Proceedings of the National Academy of Sciences USA 101: 10632–10634.CrossRefGoogle Scholar
  48. Sunde, P., and T. Kvam. 1997. Diet patterns of Eurasian lynx Lynx lynx: What causes sexually determined prey size segregation? Acta Theriologica 42: 189–201.Google Scholar
  49. Sunde, P., T. Kvam, J.P. Bolstad, and M. Bronndal. 2000. Foraging of lynxes in a managed boreal-alpine environment. Ecography 23: 291–298.CrossRefGoogle Scholar
  50. Tumlison, R. 1987. Felis lynx. Mammalian Species 269: 1–8.CrossRefGoogle Scholar
  51. Vucetich, J.A., and R.O. Peterson. 2004. The influence of top-down, bottom-up and abiotic factors on the moose (Alces alces) population of Isle Royale. Proceedings of the Royal Society B 271: 183–189.CrossRefGoogle Scholar
  52. Wiig, Ø., and T. Andersen. 1986. Sexual size dimorphism in the skull of Norwegian lynx. Acta Theriologica 31: 147–155.Google Scholar
  53. Yom-Tov, Y., T.M. Heggberget, O. Wiig, and S. Yom-Tov. 2006. Body size changes among otters, Lutra lutra, in Norway: The possible effects of food availability and global warming. Oecologia 150: 155–160.CrossRefGoogle Scholar
  54. Yom-Tov, Y., S. Yom-Tov, D. MacDonald, and E. Yom-Tov. 2007. Population cycles and changes in body size of the lynx in Alaska. Oecologia 152: 239–244.CrossRefGoogle Scholar
  55. Yom-Tov, Y., S. Yom-Tov, P. Mortensen, P. Kjellander, and H. Andrén. 2010. Body size in Eurasian lynx depends on prey availability. Polar Biology 33: 505–513.CrossRefGoogle Scholar
  56. Zannèse, A., A. Baïsse, J.-M. Gaillard, A.J.M. Hewison, K. Saint-Hilaire, C. Toïgo, G. Van Laere, and N. Morellet. 2006. Hind foot length: an indicator for monitoring roe deer populations at a landscape scale. Wildlife Society Bulletin 34: 351–358.CrossRefGoogle Scholar
  57. Zedrosser, A., B. Dahle, and J.E. Swenson. 2006. Female body size in brown bears. Journal of Mammalogy 67: 510–519.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  1. 1.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  2. 2.Nord-Trøndelag University CollegeSteinkjerNorway
  3. 3.National Center for Biosystematics, Natural History MuseumUniversity of OsloOsloNorway

Personalised recommendations