AMBIO

, Volume 39, Issue 2, pp 126–135 | Cite as

Closing a Loop: Substance Flow Analysis of Nitrogen and Phosphorus in the Rainbow Trout Production and Domestic Consumption System in Finland

Report

Abstract

Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.

Keywords

Baltic Sea Eutrophication Aquaculture Industrial ecology Finland 

Notes

Acknowledgments

This study was funded by the Serlachius Foundation, and the project IFEE (Indicator Framework for Eco-Efficiency, Grant 117822) funded by the Academy of Finland. We are grateful to Pekka Kauppi for comments on this article.

References

  1. Antikainen, R., R. Lemola, J. Nousiainen, L. Sokka, M. Esala, P. Huhtanen, and S. Rekolainen. 2005. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agriculture, Ecosystems & Environment 107: 287–305.CrossRefGoogle Scholar
  2. Ayres, R. 1989. Industrial metabolism and global change. International Social Science Journal 41: 363–373.Google Scholar
  3. Bell, J., J. McEvoy, D. Tocher, F. McGhee, P. Campbell, and J. Sargent. 2001. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. Journal of Nutrition 131: 1535–1543.Google Scholar
  4. Biomar A/S. 2007. Rainbow trout feed information. http://www.biomar.fi/2foder/Fodertype/Orred.aspx. Accessed 26 Nov 2007.
  5. Bouman, M., R. Heijungs, E. van der Voet, J.C.J.M. van den Bergh, and G. Huppes. 2000. Material flows and economic models: An analytical comparison of SFA, LCA and partial equilibrium models. Ecological Economics 32: 195–216.CrossRefGoogle Scholar
  6. Brunner, P., and H. Rechberger. 2004. Practical handbook of material flow analysis. Boca Raton: CRC Press.Google Scholar
  7. Carter, C., and R. Hauler. 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185: 299–311.CrossRefGoogle Scholar
  8. Chen, M., J. Chen, and F. Sun. 2008. Agricultural phosphorus flow and its environmental impacts in China. Science of the Total Environment 405: 140–152.CrossRefGoogle Scholar
  9. Danius, L. 2002. Data uncertainties in material flow analysis. Local case study and literature survey. Licentiate thesis at Kungliga Tekniska högskolan, Chemical and Engineering and Technology.Google Scholar
  10. Delgado, C., M. Rosegrant, N. Wada, S. Meijer, and M. Ahmed. 2002. Fish as food: Projections to 2020 under different scenarios. MTID Discussion Papers 52, International Food Policy Research Institute (IFPRI).Google Scholar
  11. Elmgren, R. 2001. Understanding human impact on the Baltic ecosystem: Changing views in recent decades. Ambio 30: 222–231.Google Scholar
  12. FAO. 2007. The state of world fisheries and aquaculture 2006. FAO.Google Scholar
  13. Fineli. 2008. National Public Health Institute, Nutrition Unit. Finnish Food Composition Database. Release 9. http://www.ktl.fi/fineli/
  14. Finnish Environmental Institute. 2008. Aquaculture nutrient load statistics 1989–2007. Helsinki, Finland: The Finnish Environmental Institute, VAHTI-Database.Google Scholar
  15. Finnish Game and Fisheries Research Institute. 2008a. Aquaculture 2007. Helsinki, Finland: Finnish Game and Fisheries Research Institute.Google Scholar
  16. Finnish Game and Fisheries Research Institute. 2008b. Foreign trade in Fish 2007. Game and Fisheries. Statistics nr. 2, 2008. Helsinki, Finland: Finnish Game and Fisheries Research Institute.Google Scholar
  17. Finnish Game and Fisheries Research Institute. 2008c. Fish consumption 1999–2007. http://www.rktl.fi/english/statistics/economy_and_the/fish_consumption/. Accessed 28 Jan 2008.
  18. Finnish Game and Fisheries Research Institute. 2008d. Commercial Marine Fishery 2007. Game and Fisheries. Statistics, nr. 3, 2008. Helsinki, Finland: Finnish Game and Fisheries Research Institute.Google Scholar
  19. Frosch, R., and N. Gallopoulos. 1989. Strategies for manufacturing. Scientific American 189: 152.Google Scholar
  20. Grönroos, J., J. Seppälä, F. Silvenius, and T. ja Mäkinen. 2006. Life cycle assessment of Finnish cultivated rainbow trout. Boreal Environmental Research 11: 401–414.Google Scholar
  21. Gyllenhammar, A., L. Håkanson, and K.-J. Lehtinen. 2008. A mesocosm fish farming experiment and its implications for reducing nutrient load on a regional scale. Aquacultural Engineering 38: 117–126.CrossRefGoogle Scholar
  22. Halweil, B. 2008. Farming fish for the future. Washington, DC: Worldwatch Institute.Google Scholar
  23. Hardy, R., and A. Tacon. 2002. Fish meal: Historical uses, production trends and future outlook for sustainable supplies. In Responsible marine aquaculture, ed. R.R. Stickney, 311–324. Wallingford, UK: CAB International.CrossRefGoogle Scholar
  24. Hedbrant, J., and L. Sörme. 2001. Data vagueness and uncertainties in urban heavy-metal data collection. Water, Air, and Soil pollution 1: 43–53.Google Scholar
  25. HELCOM. 2005. Nutrient pollution to the Baltic Sea in 2000. Baltic Sea Environment Proceedings No. 100. Google Scholar
  26. HELCOM. 2007a. Activities 2006. Baltic Sea Environment Proceedings No. 112.Google Scholar
  27. HELCOM. 2007b. The Baltic Sea action plan.Google Scholar
  28. HELCOM. 2009. Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environment Proceedings No. 115B.Google Scholar
  29. Helminen, H., E. Juntura, J. Koponen, P. Laihonen, and H. Ylinen. 1998. Assessing of long-distance background nutrient loading to the Archipelago Sea, northern Baltic, with a hydrodynamic model. Environmental Modelling Software 13: 511–518.CrossRefGoogle Scholar
  30. Isosaari, P., T. Vartiainen, A. Hallikainen, and K. Ruohonen. 2002. Feeding trial on rainbow trout: comparison of dry fish feed and Baltic herring as a source of PCDD/Fs and PCBs. Chemosphere 48: 795–804.CrossRefGoogle Scholar
  31. Karttunen, E., and J. Vielma. 1993. Kalankasvatus and ympäristö. Suomen Kalankasvattajaliitto Ry (in Finnish).Google Scholar
  32. Lifset, R., and T. Graedel. 2002. Industrial ecology: Goals and definitions, Chapter 2. In Handbook of industrial ecology, ed. R.U. Ayres, and L. Ayres. Cheltenham: Edward Elgar Publishers.Google Scholar
  33. Liljebladh, B., and A. Stigebrandt. 1996. Observations of the deepwater flow into the Baltic. Journal of Geophysical Research 101: 8895–8911.CrossRefGoogle Scholar
  34. Mayer, A.L. 2007. Strengths and weaknesses of common sustainability indices for multidimensional systems. Environment International 34: 277–291.CrossRefGoogle Scholar
  35. Moisander, P., T. Steppe, N. Hall, J. Kuparinen, and H. Paerl. 2003. Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms. Marine Ecology Progress Series 262: 81–95.CrossRefGoogle Scholar
  36. Mozaffarian, D., and E. Rimm. 2006. Fish intake, contaminants, and human health: evaluating the risks and the benefits. Journal of the American Medical Association 296: 1885–1899.CrossRefGoogle Scholar
  37. Nausch, G., D. Nehring, and G. Aertebjerg. 1999. Anthropogenic nutrient load of the Baltic Sea. Limnologica 29: 233–241.Google Scholar
  38. Pekcan-Hekim, Z. and J. Horppila. 2008. Net loading system for fish farming: trash fish reduction and internal loading. Riista-ja kalatalous—Tutkimuksia 1/2008.Google Scholar
  39. Peuhkuri, T. 2002. Knowledge and interpretation in environmental conflict: Fish farming and eutrophication in the Archipelago Sea, SW Finland. Landscape Urban Plan 61: 157–168.CrossRefGoogle Scholar
  40. Rembold, C., R. Hites, J. Foran, D. Carpenter, M. Hamilton, B. Knuth, and S. Schwager. 2004. The health benefits of eating salmon. Science 305: 475.CrossRefGoogle Scholar
  41. Rönnberg, C., and E. Bonsdorff. 2004. Baltic Sea eutrophication: Area-specific ecological consequences. Hydrobiologia 514: 227–241.CrossRefGoogle Scholar
  42. Ruohonen, K. 1994. Gastrointestinal responses of rainbow trout (Oncorhynchus mykiss Walbaum) to dry pellet and low-fat herring diets: Consequences for growth, feed utilisation and nutrient load into the water. Bangor: University of Wales. ISBN 951-8914-96-6.Google Scholar
  43. Ruohonen, K., and T. Mäkinen. 1991. Potential ways to diminish the environmental impact of mariculture in the Baltic Sea. Finnish Fisheries Research FNFRAK 12: 91–100.Google Scholar
  44. Ruohonen, K., J. Vielma, and D. Grove. 1998. Comparison of nutrient losses into the water from rainbow trout culture based on fresh Baltic herring, moist and dry diets. Aquaculture International 6: 441–450.CrossRefGoogle Scholar
  45. Saikku, L. and E. Asmala. 2010. Eutrophication in the Baltic Sea: The role of salmonid aquaculture, consumption, and international trade. Journal of Industrial Ecology 14. doi: 10.1111/j.1530-9290.2010.00221.x.
  46. Santala, E., L. Etelämäki, and O. Santala. 2006. Yhdyskuntien jätevesien puhdistus. Suomen Ympäristökeskuksen raportteja 13 (in Finnish).Google Scholar
  47. Seppälä, J., F. Silvenius, J. Grönroos, T. Mäkinen, K. Silvo, and E. Storhammar. 2001. Kirjolohen tuotanto ja ympäristö. Suomen ympäristö 529 (in Finnish).Google Scholar
  48. Setälä, J., J. Vielma, J. Koskela, A. Honkanen, K. Saarni, T. Jokelainen, M. Suvanto, and M. Kankainen. 2007. Ahvenanmaan kestävän kalankasvatuksen kehittämisvaihtoehtoja. Kala-ja riistaraportteja 412 (in Finnish).Google Scholar
  49. Sidhu, K. 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology 38: 336–344.CrossRefGoogle Scholar
  50. Silvenius, F. 2000. Kalankasvatus ja ympäristö. Kalankasvatuksen prosessikuvaus. Kala ja riistaraportteja 198 (in Finnish).Google Scholar
  51. Sokka, L., R. Antikainen, and P. Kauppi. 2004. Flows of nitrogen and phosphorus in municipal waste: A substance flow analysis in Finland. Progress in Industrial Ecology 1: 165–186.CrossRefGoogle Scholar
  52. Tamminen, T., and T. Andersen. 2007. Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Marine Ecology Progress Series 340: 121–138.CrossRefGoogle Scholar
  53. Tapio, P., and R. Willamo. 2008. Developing interdisciplinary environmental frameworks. Ambio 37: 125–133.CrossRefGoogle Scholar
  54. The Western Finland Environmental Permit Authority. 2004. Länsi-Suomen ympäristölupavirasto, decision 56/2004/1 Dno. LSY-2003-Y-38. http://www.ymparisto.fi/download.asp?contentid=80451.
  55. Udo de Haes, H.A., E. van der Voet, and R. Kleijn. 1997. Substance flow analysis (SFA), an analytical tool for integrated chain management. In Regional and national material flow accounting: From paradigm to practice of sustainability, ed. S. Bringezu, M. Fischer-Kowalski, R. Kleijn, V. Palm, 32–42. Proceedings of the ConAccount Workshop, 21–23 January 1997. Leiden, The Netherlands: Wuppertal Institute for Climate, Environment and Energy.Google Scholar
  56. van der Voet, E. 1995. Substance flows through the economy and environment of a region. Environmental Science and Pollution Research International 2: 89–96.CrossRefGoogle Scholar
  57. van der Voet, E. 2001. SFA methodology, Luku 9. In Handbook of industrial ecology, ed. R.U. Ayres and L. Ayres. Cheltenham: Edward Elgar Publishers.Google Scholar
  58. Vielma, J., T. Mäkinen, and J. Koskela. 2000. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture 183: 349–362.CrossRefGoogle Scholar
  59. Vihervuori, A. and A. Ahvonen. 1997. Miten kalankulutusta arvioidaan. Kalavirrat. SVT. Ympäristö 1997:13, 34–38 (in Finnish).Google Scholar
  60. Wideskog, M. 2000. Kalankasvatuksen kuormitustilastoinnin luotettavuus vuosina 1997–1998. Lounais-Suomen ympäristökeskuksen moniste 3/2000 (in Finnish).Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  1. 1.Environmental Sciences, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations