Skip to main content
Log in

A Richer, Greener and Smaller Alpine World: Review and Projection of Warming-Induced Plant Cover Change in the Swedish Scandes

  • Review Paper
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Alpine plant life is proliferating, biodiversity is on the rise and the mountain world appears more productive and inviting than ever. Upper range margin rise of trees and low-altitude (boreal) plant species, expansion of alpine grasslands and dwarf-shrub heaths are the modal biotic adjustments during the past few decades, after a century of substantial climate warming in the Swedish Scandes. This course of biotic landscape evolution has reached historical dimensions and broken a multi-millennial trend of plant cover retrogression, alpine tundra expansion, floristic and faunal impoverishment, all imposed by progressive and deterministic neoglacial climate cooling. Continued modest warming over the present century will likely be beneficial to alpine biodiversity, geoecological stability, resilience, sustainable reindeer husbandry and aesthetic landscape qualities. These aspects are highlighted by an integrative review of results from long-term monitoring of subalpine/alpine vegetation in the Swedish Scandes. This forms the basis for some tentative projections of landscape transformations in a potentially warmer future. Notably, these results and projections are not necessarily valid in other regions and differ in some respects from model predictions. Continued monitoring is mandatory as a basis for generation of more realistic vegetation and ecosystem models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aerts, R., J.H.C. Cornelissen, and E. Dorrepaal. 2006. Plant performance in a warmer world. Plant Ecology 182: 65–77.

    Google Scholar 

  • Allen, J.R., and B. Huntley. 1999. Estimating past floristic diversity in mountain regions from macrofossil assemblages. Journal of Biogeography 26: 55–73.

    Article  Google Scholar 

  • Anschlag, K., G. Broll, and F.-K. Holtmeier. 2008. Mountain birch seedlings in the tundra ecotone, subarctic Finland: Variation in above- and below-ground growth depending on microtopography. Arctic, Antarctic, and Alpine Research 40: 609–616.

    Article  Google Scholar 

  • Arft, A.M., M.D. Walker, J. Gurevitch, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.

    Google Scholar 

  • Bahn, M., and C. Körner. 2003. Recent increases in summit flora caused by warming in the Alps. In Alpine biodiversity in Europe, ed. L. Nagy, G. Grabherr, C. Körner, and D.B.A. Thompson, 437–441. Berlin: Springer.

    Google Scholar 

  • Bakkenes, M., J.R.M. Alkemade, F. Ihle, R. Leemans, and J.B. Latour. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8: 390–407.

    Article  Google Scholar 

  • Barrett, J.E., R.A. Virginia, D.H. Wall, P.T. Doran, A.G. Fountain, K.A. Welch, and W.B. Lyons. 2008. Persistent effects of a discrete warming event on polar desert ecosystem. Global Change Biology 14: 2249–2261.

    Article  Google Scholar 

  • Birks, H.H. 2008. The late-quaternary history of arctic and alpine plants. Plant Ecology & Diversity 1: 135–146.

    Article  Google Scholar 

  • Birks, H.J.B., and H.H. Birks. 2008. Biological responses to rapid climate change at the Younger Dryas Holocene transition at Kråkenes, western Norway. The Holocene 18: 19–30.

    Article  Google Scholar 

  • Birks, H.J.B., and K.J. Willis. 2008. Alpines, trees, and refugia in Europe. Plant Ecology & Diversity 1: 147–160.

    Article  Google Scholar 

  • Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.

    Article  Google Scholar 

  • Bokhorst, S., J.W. Bjerke, F.W. Bowles, J. Melillo, T.V. Callaghan, and G.K. Phoenix. 2008. Impacts of extreme winter warming in the sub-Arctic: Growing season responses of dwarf shrub heathland. Global Change Biology 14: 2603–2612.

    Google Scholar 

  • Botkin, D.B., et al. 2007. Forecasting the effects of global warming on biodiversity. BioScience 57: 227–236.

    Article  Google Scholar 

  • Bradshaw, R.H.W. 1995. The origins and dynamics of native forest ecosystems: Background to the use of exotic species in forestry. Icelandic Agricultural Sciences 9: 7–15.

    Google Scholar 

  • Burga, C.A., G.-R. Walther, and S. Beissner. 2004. Florenvandel in der alpine Stufe des Berninagebietes—ein Klimasignal? Berichte des Reinhold-Tüxen Gesellschaft 16: 57–65.

    Google Scholar 

  • Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and Environment 5: 360–365.

    Article  Google Scholar 

  • Crawford, R.M.M. 2008. Cold climate plants in a warmer world. Plant Ecology & Diversity 1: 285–297.

    Article  Google Scholar 

  • Dahl, E. 1998. The phytogeography of northern Europe, 295 pp. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dalrymple, S. 2007. Biological flora of the British Isles, Melampyrum sylvaticum L. Journal of Ecology 95: 583–597.

    Article  Google Scholar 

  • Danell, E. 1994. Cantharellus cibarius: Mycorrhiza formation and ecology. Acta Universitatis Upsaliensis 35: 1–75.

    Google Scholar 

  • Danielsson, B. 1984. Where are the southernmost stations for alpine plants in Härjedalen? C Sweden. Svensk Botanisk Tidskrift 77: 137–146.

    Google Scholar 

  • Davis, M.A., J.P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Fickert, T., D. Friend, F. Grüninger, B. Molina, and M. Richter. 2007. Did debris-covered glaciers serve as Pleistocene refugia for plants? Arctic, Antarctic, and Alpine Research 39: 245–257.

    Article  Google Scholar 

  • Giesecke, T. 2005. Holocene forest development in the central Scandes Mountains, Sweden. Vegetation History and Archaeobotany 14: 133–147.

    Article  Google Scholar 

  • Grabherr, G., M. Gottfried, A. Gruber, and H. Pauli. 1995. Patterns and current changes in alpine plant diversity. In Arctic and alpine biodiversity, ed. F.S. Chapin, and C. Körner, 167–181. Berlin: Springer.

    Google Scholar 

  • Grace, J., F. Berninger, and L. Nagy. 2002. Impacts of climate change on the treeline. Annals of Botany 90: 533–544.

    Google Scholar 

  • Halloy, S.R.P., and A.F. Mark. 2003. Climate-change effects on alpine plant diversity: A New Zealand perspective-quantifying the threat. Arctic, Antarctic, and Alpine Research 35: 248–254.

    Article  Google Scholar 

  • Hofer, H.R. 1992. Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Berichte des Geobotanischen Institutes ETH, Stiftung Rübel 58: 39–54.

    Google Scholar 

  • Høye, T.T., E. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High Arctic. Current Biology 17: 449–451.

    Article  CAS  Google Scholar 

  • IPCC. 2007. Climate change 2007. The physical scientific basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Iversen, J. 1973. The development of Denmark’s nature since the last glacial. Danmarks Geologiske Undersøgelse Series V. Raekke 7-C: 1–126.

    Google Scholar 

  • Jurasinski, G., and J. Kreyling. 2007. Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science 18: 711–718.

    Article  Google Scholar 

  • Kilander, S. 1955. Kärlväxternas övre gränser på fjäll i sydvästra Jämtland. Acta Phytogeographica Suecica 35: 1–198 (in Swedish with English summary).

    Google Scholar 

  • Klanderud, K., and H.J.B. Birks. 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13: 1–6.

    Article  Google Scholar 

  • Körner, C. 2002. Mountain biodiversity, its causes and function: An overview. In Mountain biodiversity, a global assessment, ed. C. Körner, and E.M. Spehn, 3–20. Boca Raton: The Parthenon Publishing group.

    Google Scholar 

  • Kullman, L. 1979. Change and stability in the altitude of the birch tree-limit in the Southern Swedish Scandes 1915–1975. Acta Phytogeographica Suecica 65: 1–121.

    Google Scholar 

  • Kullman, L. 1997. Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geografiska Annaler 79A: 139–165.

    Article  Google Scholar 

  • Kullman, L. 2001. Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nordic Journal of Botany 21: 39–54.

    Article  Google Scholar 

  • Kullman, L. 2002. Rapid recent range margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77.

    Article  Google Scholar 

  • Kullman, L. 2004a. A face of global warming—“ice birches” and a changing alpine plant cover. Geo-Öko 25: 181–202.

    Google Scholar 

  • Kullman, L. 2004b. Tree-limit and landscape evolution at the southern fringe of the Swedish Scandes (Dalarna province)—Holocene and 20th century perspectives. Fennia 182: 73–94.

    Google Scholar 

  • Kullman, L. 2004c. Early Holocene appearance of mountain birch (Betula pubescens ssp. tortuosa) at unprecedented high elevations in the Swedish Scandes: Megafossil evidence exposed by recent snow and ice recession. Arctic, Antarctic, and Alpine Research 36: 172–180.

    Article  Google Scholar 

  • Kullman, L. 2005a. Gamla och nya träd på Fulufjället—vegetationshistoria på hög nivå. Svensk Botanisk Tidskrift 99: 315–329 (in Swedish with English summary).

    Google Scholar 

  • Kullman, L. 2005b. The mountain taiga of Sweden. In The physical geography of Fennoscandia, ed. M. Seppälä, 297–324. Oxford: Oxford University Press.

    Google Scholar 

  • Kullman, L. 2006. Transformation of alpine and subalpine vegetation in a potentially warmer future, the Anthropocene era. Tentative projections based on long-term observations and paleovegetation records. Current Trends in Ecology 1: 1–16.

    Google Scholar 

  • Kullman, L. 2007a. Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden. Nordic Journal of Botany 24: 45–467.

    Google Scholar 

  • Kullman, L. 2007b. Modern climate change and shifting ecological states of the subalpine/alpine landscape in the Swedish Scandes. Geo-Öko 28: 187–221.

    Google Scholar 

  • Kullman, L. 2008. Thermophilic tree species reinvade subalpine Sweden-early responses to anomalous late Holocene climate warming. Arctic, Antarctic, and Alpine Research 40: 104–110.

    Article  Google Scholar 

  • Kullman, L. 2009. High species turnover and decreasing plant species richness on mountain summits in Sweden: reindeer grazing overrides climate change? Comment. Arctic, Antarctic, and Alpine Research 41: 51.

    Article  Google Scholar 

  • Kullman, L. 2010. A century of treeline change and stability. Landscape Online 17: 1–31.

    Google Scholar 

  • Kullman, L., and O. Engelmark. 1997. Neoglacial climate control of subarctic Picea abies stand dynamics and range limit in northern Sweden. Arctic and Alpine Research 29: 315–326.

    Article  Google Scholar 

  • Kullman, L., and L. Kjällgren. 2006. Holocene tree-line evolution in the Swedish Scandes: Recent tree-line rise and climate change in a long-term perspective. Boreas 35: 159–168.

    Article  Google Scholar 

  • Kullman, L., and L. Öberg. 2009. Post-little ice age treeline rise and climate warming in the Swedish Scandes—a landscape-scale perspective. Journal of Ecology 97: 415–429.

    Article  Google Scholar 

  • le Roux, P.C., and M.A. McGeoch. 2008. Rapid range expansion and community reorganization in response to warming. Global Change Biology 14: 2950–2962.

    Article  Google Scholar 

  • Marrs, R.H., and A.S. Watt. 2006. Biological Flora of the British Isles: Pteridium aquilinum (L.) Kuhn. Journal of Ecology 94: 1272–1321.

    Article  Google Scholar 

  • McCann, K.S. 2000. The diversity-stability debate. Nature 405: 228–233.

    Article  CAS  Google Scholar 

  • McLaren, J.R. 2006. Effects of plant functional groups on vegetation dynamics and ecosystems properties. Arctic 59: 449–452.

    Google Scholar 

  • Milbau, A., B.J. Graae, A. Shevtsova, and I. Nijs. 2009. Effects of warmer climate on seed germination in the subarctic. Annals of Botany 104: 87–296.

    Google Scholar 

  • Moen, J., K. Aune, L. Edenius, and A. Angerbjörn. 2004. Potential effects of climate change on treeline position in the Swedish mountains. Ecology and Society 16: 1–10.

    Google Scholar 

  • Mossberg, B., and L. Stenberg. 2003. Den Nya Nordiska Floran, 928 pp. Stockholm: Wahlström & Widstrand.

    Google Scholar 

  • Nagy, L. 2006. European high mountain alpine vegetation and its suitability for indicating climate change. Proceedings of the Royal Irish Academy 106B: 335–341.

    Article  Google Scholar 

  • Nordhagen, R. 1964. Vassdragsreguleringene, naturvernet og norsk videnskap. Aftenposten 25 mars 1964: 9–10.

  • Öberg, L. 2002. Trädgränsdynamik i Sånfjällsområdet, Härjedalen. Svensk Botanisk Tidskrift 96: 177–185 (in Swedish with English summary).

    Google Scholar 

  • Öberg, L. 2008. Trädgränsen som indikator för ekologiska klimateffekter i fjällen. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport 2008:01, 1–34.

  • Öberg, L. 2009. Kärlväxtflorans dynamic och stabilitet. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport 2009:01, 1–26.

  • Oldfield, F. 2005. Environmental change. Key issues and alternative perspectives, 363 pp. Cambridge: Cambridge University Press.

    Google Scholar 

  • Olthof, I., D. Pouliot, R. Latifovic, and W. Chen. 2008. Recent (1986–2006) vegetation-specific NDVI trends in northern Canada from satellite data. Arctic 61: 381–394.

    Google Scholar 

  • Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change. Impacts across natural ecosystems. Nature 421: 37–42.

    Article  CAS  Google Scholar 

  • Pauli, H., M. Gottfried, and G. Grabherr. 2001. High summits of the Alps in a changing climate. In Fingerprints of climate change, ed. G.-R. Walther, C.A. Burga, and P.J. Edwards, 139–149. New York: Kluwer.

    Google Scholar 

  • Pauli, H., M. Gottfried, K. Reiter, C. Klettner, and G. Grabherr. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13: 147–156.

    Article  Google Scholar 

  • Persson, P.E. 2003. Dvärgsyran gynnades av den varma fjällsommaren 2002. Svensk Botanisk Tidskrift 97: 105–106 (in Swedish with English summary).

    Google Scholar 

  • Peters, R.L., and T.E. Lovejoy (eds.). 1992. Global warming and biological diversity. New Haven: Yale University Press.

    Google Scholar 

  • Robinson, S.A., J. Wosley, and A.K. Tobin. 2003. Living on the edge—plants and global change in continental an maritime Antarctica. Global Change Biology 9: 1681–1717.

    Article  Google Scholar 

  • Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig, and J.A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

    Article  CAS  Google Scholar 

  • Schröter, D., W. Cramer, R. Leemans, et al. 2005. Ecosystems service supply and vulnerability to global change in Europe. Science 310: 1333–1337.

    Article  CAS  Google Scholar 

  • Seimon, T.A., A. Seimon, P. Daszak, S.R.P. Halloys, L.M. Schloegel, C.A. Aguilar, P. Sowell, A.D. Hyatt, B. Konecky, and J.E. Simmons. 2007. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology 13: 288–299.

    Article  Google Scholar 

  • Sirén, G. 1993. Advances and retreats of pine tree and timberline in the north of Finland. World Resource Review 5: 104–110.

    Google Scholar 

  • Smith, H. 1920. Vegetationen och dess Utvecklingshistoria i det Centralsvenska Högfjällsområdet, 238 pp. Uppsala: Almqvist och Wiksell.

    Google Scholar 

  • Smith, H. 1957. En botanisk undersökning av Neans dalgång. Kungliga Svenska Vetenskapsakademiens Avhandlingar i Naturskyddsärenden 16: 1–21.

    Google Scholar 

  • SOU. 2007. Klimat-och sårbarhetsutredningen. Sverige inför klimatförändringarna—hot och möjligheter. Statens Offentliga Utredningar 2007 (60), Stockholm, 719 pp.

  • Sydes, C. 2008. Can we protect threatened Scottish arctic-alpine higher plants? Ecology & Diversity 1: 339–349.

    Article  Google Scholar 

  • Theurillat, J.-P., and A. Guisan. 2001. Potential impacts of climate change on vegetation in the European Alps: A review. Climatic Change 50: 77–109.

    Article  CAS  Google Scholar 

  • Väliranta, M., A. Kaakinen, and P. Kuhry. 2003. Holocene climate and landscape evolution east of the Pechora Delta, East-European Russian Arctic. Quaternary Research 59: 335–344.

    Article  Google Scholar 

  • Velle, G., J. Larsen, W. Eide, S.M. Peglar, and H.J.B. Birks. 2005. Holocene environmental history an climate of Råtåsjøen, a low-alpine lake in south-central Norway. Journal of Paleolimnology 33: 129–153.

    Article  Google Scholar 

  • Virtanen, R., A. Eskelinen, and E. Gaare. 2003. Long-term changes in alpine plant communities in Norway and Finland. In Alpine biodiversity in Europe, ed. L. Nagy, G. Grabherr, C. Körner, and D.B.A. Thompson, 411–422. Berlin: Springer.

    Google Scholar 

  • Walker, M.D., et al. 2006. Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of America 1003: 1342–1346.

    Article  CAS  Google Scholar 

  • Walther, G.-R., S. Beissner, and C.A. Burga. 2005. Trends in upward shift of alpine plants. Journal of Vegetation Science 16: 541–548.

    Article  Google Scholar 

  • Westerström, G. 2008. Floran i tre socknar i nordvästra Ångermanland. Svensk Botanisk Tidskrift 102: 225–261 (in Swedish with English summary).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Kullman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullman, L. A Richer, Greener and Smaller Alpine World: Review and Projection of Warming-Induced Plant Cover Change in the Swedish Scandes. AMBIO 39, 159–169 (2010). https://doi.org/10.1007/s13280-010-0021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-010-0021-8

Keywords

Navigation