, Volume 39, Issue 2, pp 159–169 | Cite as

A Richer, Greener and Smaller Alpine World: Review and Projection of Warming-Induced Plant Cover Change in the Swedish Scandes

  • Leif Kullman
Review Paper


Alpine plant life is proliferating, biodiversity is on the rise and the mountain world appears more productive and inviting than ever. Upper range margin rise of trees and low-altitude (boreal) plant species, expansion of alpine grasslands and dwarf-shrub heaths are the modal biotic adjustments during the past few decades, after a century of substantial climate warming in the Swedish Scandes. This course of biotic landscape evolution has reached historical dimensions and broken a multi-millennial trend of plant cover retrogression, alpine tundra expansion, floristic and faunal impoverishment, all imposed by progressive and deterministic neoglacial climate cooling. Continued modest warming over the present century will likely be beneficial to alpine biodiversity, geoecological stability, resilience, sustainable reindeer husbandry and aesthetic landscape qualities. These aspects are highlighted by an integrative review of results from long-term monitoring of subalpine/alpine vegetation in the Swedish Scandes. This forms the basis for some tentative projections of landscape transformations in a potentially warmer future. Notably, these results and projections are not necessarily valid in other regions and differ in some respects from model predictions. Continued monitoring is mandatory as a basis for generation of more realistic vegetation and ecosystem models.


Alpine vegetation Biodiversity Climate change Greening Monitoring Scandes 


  1. Aerts, R., J.H.C. Cornelissen, and E. Dorrepaal. 2006. Plant performance in a warmer world. Plant Ecology 182: 65–77.Google Scholar
  2. Allen, J.R., and B. Huntley. 1999. Estimating past floristic diversity in mountain regions from macrofossil assemblages. Journal of Biogeography 26: 55–73.CrossRefGoogle Scholar
  3. Anschlag, K., G. Broll, and F.-K. Holtmeier. 2008. Mountain birch seedlings in the tundra ecotone, subarctic Finland: Variation in above- and below-ground growth depending on microtopography. Arctic, Antarctic, and Alpine Research 40: 609–616.CrossRefGoogle Scholar
  4. Arft, A.M., M.D. Walker, J. Gurevitch, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.Google Scholar
  5. Bahn, M., and C. Körner. 2003. Recent increases in summit flora caused by warming in the Alps. In Alpine biodiversity in Europe, ed. L. Nagy, G. Grabherr, C. Körner, and D.B.A. Thompson, 437–441. Berlin: Springer.Google Scholar
  6. Bakkenes, M., J.R.M. Alkemade, F. Ihle, R. Leemans, and J.B. Latour. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8: 390–407.CrossRefGoogle Scholar
  7. Barrett, J.E., R.A. Virginia, D.H. Wall, P.T. Doran, A.G. Fountain, K.A. Welch, and W.B. Lyons. 2008. Persistent effects of a discrete warming event on polar desert ecosystem. Global Change Biology 14: 2249–2261.CrossRefGoogle Scholar
  8. Birks, H.H. 2008. The late-quaternary history of arctic and alpine plants. Plant Ecology & Diversity 1: 135–146.CrossRefGoogle Scholar
  9. Birks, H.J.B., and H.H. Birks. 2008. Biological responses to rapid climate change at the Younger Dryas Holocene transition at Kråkenes, western Norway. The Holocene 18: 19–30.CrossRefGoogle Scholar
  10. Birks, H.J.B., and K.J. Willis. 2008. Alpines, trees, and refugia in Europe. Plant Ecology & Diversity 1: 147–160.CrossRefGoogle Scholar
  11. Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.CrossRefGoogle Scholar
  12. Bokhorst, S., J.W. Bjerke, F.W. Bowles, J. Melillo, T.V. Callaghan, and G.K. Phoenix. 2008. Impacts of extreme winter warming in the sub-Arctic: Growing season responses of dwarf shrub heathland. Global Change Biology 14: 2603–2612.Google Scholar
  13. Botkin, D.B., et al. 2007. Forecasting the effects of global warming on biodiversity. BioScience 57: 227–236.CrossRefGoogle Scholar
  14. Bradshaw, R.H.W. 1995. The origins and dynamics of native forest ecosystems: Background to the use of exotic species in forestry. Icelandic Agricultural Sciences 9: 7–15.Google Scholar
  15. Burga, C.A., G.-R. Walther, and S. Beissner. 2004. Florenvandel in der alpine Stufe des Berninagebietes—ein Klimasignal? Berichte des Reinhold-Tüxen Gesellschaft 16: 57–65.Google Scholar
  16. Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and Environment 5: 360–365.CrossRefGoogle Scholar
  17. Crawford, R.M.M. 2008. Cold climate plants in a warmer world. Plant Ecology & Diversity 1: 285–297.CrossRefGoogle Scholar
  18. Dahl, E. 1998. The phytogeography of northern Europe, 295 pp. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Dalrymple, S. 2007. Biological flora of the British Isles, Melampyrum sylvaticum L. Journal of Ecology 95: 583–597.CrossRefGoogle Scholar
  20. Danell, E. 1994. Cantharellus cibarius: Mycorrhiza formation and ecology. Acta Universitatis Upsaliensis 35: 1–75.Google Scholar
  21. Danielsson, B. 1984. Where are the southernmost stations for alpine plants in Härjedalen? C Sweden. Svensk Botanisk Tidskrift 77: 137–146.Google Scholar
  22. Davis, M.A., J.P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology 88: 528–534.CrossRefGoogle Scholar
  23. Fickert, T., D. Friend, F. Grüninger, B. Molina, and M. Richter. 2007. Did debris-covered glaciers serve as Pleistocene refugia for plants? Arctic, Antarctic, and Alpine Research 39: 245–257.CrossRefGoogle Scholar
  24. Giesecke, T. 2005. Holocene forest development in the central Scandes Mountains, Sweden. Vegetation History and Archaeobotany 14: 133–147.CrossRefGoogle Scholar
  25. Grabherr, G., M. Gottfried, A. Gruber, and H. Pauli. 1995. Patterns and current changes in alpine plant diversity. In Arctic and alpine biodiversity, ed. F.S. Chapin, and C. Körner, 167–181. Berlin: Springer.Google Scholar
  26. Grace, J., F. Berninger, and L. Nagy. 2002. Impacts of climate change on the treeline. Annals of Botany 90: 533–544.Google Scholar
  27. Halloy, S.R.P., and A.F. Mark. 2003. Climate-change effects on alpine plant diversity: A New Zealand perspective-quantifying the threat. Arctic, Antarctic, and Alpine Research 35: 248–254.CrossRefGoogle Scholar
  28. Hofer, H.R. 1992. Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Berichte des Geobotanischen Institutes ETH, Stiftung Rübel 58: 39–54.Google Scholar
  29. Høye, T.T., E. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High Arctic. Current Biology 17: 449–451.CrossRefGoogle Scholar
  30. IPCC. 2007. Climate change 2007. The physical scientific basis. Cambridge: Cambridge University Press.Google Scholar
  31. Iversen, J. 1973. The development of Denmark’s nature since the last glacial. Danmarks Geologiske Undersøgelse Series V. Raekke 7-C: 1–126.Google Scholar
  32. Jurasinski, G., and J. Kreyling. 2007. Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science 18: 711–718.CrossRefGoogle Scholar
  33. Kilander, S. 1955. Kärlväxternas övre gränser på fjäll i sydvästra Jämtland. Acta Phytogeographica Suecica 35: 1–198 (in Swedish with English summary).Google Scholar
  34. Klanderud, K., and H.J.B. Birks. 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13: 1–6.CrossRefGoogle Scholar
  35. Körner, C. 2002. Mountain biodiversity, its causes and function: An overview. In Mountain biodiversity, a global assessment, ed. C. Körner, and E.M. Spehn, 3–20. Boca Raton: The Parthenon Publishing group.Google Scholar
  36. Kullman, L. 1979. Change and stability in the altitude of the birch tree-limit in the Southern Swedish Scandes 1915–1975. Acta Phytogeographica Suecica 65: 1–121.Google Scholar
  37. Kullman, L. 1997. Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geografiska Annaler 79A: 139–165.CrossRefGoogle Scholar
  38. Kullman, L. 2001. Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nordic Journal of Botany 21: 39–54.CrossRefGoogle Scholar
  39. Kullman, L. 2002. Rapid recent range margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77.CrossRefGoogle Scholar
  40. Kullman, L. 2004a. A face of global warming—“ice birches” and a changing alpine plant cover. Geo-Öko 25: 181–202.Google Scholar
  41. Kullman, L. 2004b. Tree-limit and landscape evolution at the southern fringe of the Swedish Scandes (Dalarna province)—Holocene and 20th century perspectives. Fennia 182: 73–94.Google Scholar
  42. Kullman, L. 2004c. Early Holocene appearance of mountain birch (Betula pubescens ssp. tortuosa) at unprecedented high elevations in the Swedish Scandes: Megafossil evidence exposed by recent snow and ice recession. Arctic, Antarctic, and Alpine Research 36: 172–180.CrossRefGoogle Scholar
  43. Kullman, L. 2005a. Gamla och nya träd på Fulufjället—vegetationshistoria på hög nivå. Svensk Botanisk Tidskrift 99: 315–329 (in Swedish with English summary).Google Scholar
  44. Kullman, L. 2005b. The mountain taiga of Sweden. In The physical geography of Fennoscandia, ed. M. Seppälä, 297–324. Oxford: Oxford University Press.Google Scholar
  45. Kullman, L. 2006. Transformation of alpine and subalpine vegetation in a potentially warmer future, the Anthropocene era. Tentative projections based on long-term observations and paleovegetation records. Current Trends in Ecology 1: 1–16.Google Scholar
  46. Kullman, L. 2007a. Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden. Nordic Journal of Botany 24: 45–467.Google Scholar
  47. Kullman, L. 2007b. Modern climate change and shifting ecological states of the subalpine/alpine landscape in the Swedish Scandes. Geo-Öko 28: 187–221.Google Scholar
  48. Kullman, L. 2008. Thermophilic tree species reinvade subalpine Sweden-early responses to anomalous late Holocene climate warming. Arctic, Antarctic, and Alpine Research 40: 104–110.CrossRefGoogle Scholar
  49. Kullman, L. 2009. High species turnover and decreasing plant species richness on mountain summits in Sweden: reindeer grazing overrides climate change? Comment. Arctic, Antarctic, and Alpine Research 41: 51.CrossRefGoogle Scholar
  50. Kullman, L. 2010. A century of treeline change and stability. Landscape Online 17: 1–31.Google Scholar
  51. Kullman, L., and O. Engelmark. 1997. Neoglacial climate control of subarctic Picea abies stand dynamics and range limit in northern Sweden. Arctic and Alpine Research 29: 315–326.CrossRefGoogle Scholar
  52. Kullman, L., and L. Kjällgren. 2006. Holocene tree-line evolution in the Swedish Scandes: Recent tree-line rise and climate change in a long-term perspective. Boreas 35: 159–168.CrossRefGoogle Scholar
  53. Kullman, L., and L. Öberg. 2009. Post-little ice age treeline rise and climate warming in the Swedish Scandes—a landscape-scale perspective. Journal of Ecology 97: 415–429.CrossRefGoogle Scholar
  54. le Roux, P.C., and M.A. McGeoch. 2008. Rapid range expansion and community reorganization in response to warming. Global Change Biology 14: 2950–2962.CrossRefGoogle Scholar
  55. Marrs, R.H., and A.S. Watt. 2006. Biological Flora of the British Isles: Pteridium aquilinum (L.) Kuhn. Journal of Ecology 94: 1272–1321.CrossRefGoogle Scholar
  56. McCann, K.S. 2000. The diversity-stability debate. Nature 405: 228–233.CrossRefGoogle Scholar
  57. McLaren, J.R. 2006. Effects of plant functional groups on vegetation dynamics and ecosystems properties. Arctic 59: 449–452.Google Scholar
  58. Milbau, A., B.J. Graae, A. Shevtsova, and I. Nijs. 2009. Effects of warmer climate on seed germination in the subarctic. Annals of Botany 104: 87–296.Google Scholar
  59. Moen, J., K. Aune, L. Edenius, and A. Angerbjörn. 2004. Potential effects of climate change on treeline position in the Swedish mountains. Ecology and Society 16: 1–10.Google Scholar
  60. Mossberg, B., and L. Stenberg. 2003. Den Nya Nordiska Floran, 928 pp. Stockholm: Wahlström & Widstrand.Google Scholar
  61. Nagy, L. 2006. European high mountain alpine vegetation and its suitability for indicating climate change. Proceedings of the Royal Irish Academy 106B: 335–341.CrossRefGoogle Scholar
  62. Nordhagen, R. 1964. Vassdragsreguleringene, naturvernet og norsk videnskap. Aftenposten 25 mars 1964: 9–10.Google Scholar
  63. Öberg, L. 2002. Trädgränsdynamik i Sånfjällsområdet, Härjedalen. Svensk Botanisk Tidskrift 96: 177–185 (in Swedish with English summary).Google Scholar
  64. Öberg, L. 2008. Trädgränsen som indikator för ekologiska klimateffekter i fjällen. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport 2008:01, 1–34.Google Scholar
  65. Öberg, L. 2009. Kärlväxtflorans dynamic och stabilitet. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport 2009:01, 1–26.Google Scholar
  66. Oldfield, F. 2005. Environmental change. Key issues and alternative perspectives, 363 pp. Cambridge: Cambridge University Press.Google Scholar
  67. Olthof, I., D. Pouliot, R. Latifovic, and W. Chen. 2008. Recent (1986–2006) vegetation-specific NDVI trends in northern Canada from satellite data. Arctic 61: 381–394.Google Scholar
  68. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change. Impacts across natural ecosystems. Nature 421: 37–42.CrossRefGoogle Scholar
  69. Pauli, H., M. Gottfried, and G. Grabherr. 2001. High summits of the Alps in a changing climate. In Fingerprints of climate change, ed. G.-R. Walther, C.A. Burga, and P.J. Edwards, 139–149. New York: Kluwer.Google Scholar
  70. Pauli, H., M. Gottfried, K. Reiter, C. Klettner, and G. Grabherr. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13: 147–156.CrossRefGoogle Scholar
  71. Persson, P.E. 2003. Dvärgsyran gynnades av den varma fjällsommaren 2002. Svensk Botanisk Tidskrift 97: 105–106 (in Swedish with English summary).Google Scholar
  72. Peters, R.L., and T.E. Lovejoy (eds.). 1992. Global warming and biological diversity. New Haven: Yale University Press.Google Scholar
  73. Robinson, S.A., J. Wosley, and A.K. Tobin. 2003. Living on the edge—plants and global change in continental an maritime Antarctica. Global Change Biology 9: 1681–1717.CrossRefGoogle Scholar
  74. Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig, and J.A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.CrossRefGoogle Scholar
  75. Schröter, D., W. Cramer, R. Leemans, et al. 2005. Ecosystems service supply and vulnerability to global change in Europe. Science 310: 1333–1337.CrossRefGoogle Scholar
  76. Seimon, T.A., A. Seimon, P. Daszak, S.R.P. Halloys, L.M. Schloegel, C.A. Aguilar, P. Sowell, A.D. Hyatt, B. Konecky, and J.E. Simmons. 2007. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology 13: 288–299.CrossRefGoogle Scholar
  77. Sirén, G. 1993. Advances and retreats of pine tree and timberline in the north of Finland. World Resource Review 5: 104–110.Google Scholar
  78. Smith, H. 1920. Vegetationen och dess Utvecklingshistoria i det Centralsvenska Högfjällsområdet, 238 pp. Uppsala: Almqvist och Wiksell.Google Scholar
  79. Smith, H. 1957. En botanisk undersökning av Neans dalgång. Kungliga Svenska Vetenskapsakademiens Avhandlingar i Naturskyddsärenden 16: 1–21.Google Scholar
  80. SOU. 2007. Klimat-och sårbarhetsutredningen. Sverige inför klimatförändringarna—hot och möjligheter. Statens Offentliga Utredningar 2007 (60), Stockholm, 719 pp.Google Scholar
  81. Sydes, C. 2008. Can we protect threatened Scottish arctic-alpine higher plants? Ecology & Diversity 1: 339–349.CrossRefGoogle Scholar
  82. Theurillat, J.-P., and A. Guisan. 2001. Potential impacts of climate change on vegetation in the European Alps: A review. Climatic Change 50: 77–109.CrossRefGoogle Scholar
  83. Väliranta, M., A. Kaakinen, and P. Kuhry. 2003. Holocene climate and landscape evolution east of the Pechora Delta, East-European Russian Arctic. Quaternary Research 59: 335–344.CrossRefGoogle Scholar
  84. Velle, G., J. Larsen, W. Eide, S.M. Peglar, and H.J.B. Birks. 2005. Holocene environmental history an climate of Råtåsjøen, a low-alpine lake in south-central Norway. Journal of Paleolimnology 33: 129–153.CrossRefGoogle Scholar
  85. Virtanen, R., A. Eskelinen, and E. Gaare. 2003. Long-term changes in alpine plant communities in Norway and Finland. In Alpine biodiversity in Europe, ed. L. Nagy, G. Grabherr, C. Körner, and D.B.A. Thompson, 411–422. Berlin: Springer.Google Scholar
  86. Walker, M.D., et al. 2006. Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of America 1003: 1342–1346.CrossRefGoogle Scholar
  87. Walther, G.-R., S. Beissner, and C.A. Burga. 2005. Trends in upward shift of alpine plants. Journal of Vegetation Science 16: 541–548.CrossRefGoogle Scholar
  88. Westerström, G. 2008. Floran i tre socknar i nordvästra Ångermanland. Svensk Botanisk Tidskrift 102: 225–261 (in Swedish with English summary).Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  1. 1.Institution of Ecology and Environmental SciencesUmeå UniversityUmeåSweden
  2. 2.Institutionen för ekologi, miljö och geovetenskapUmeå UniversitetUmeåSweden

Personalised recommendations