Using network motifs to characterize temporal network evolution leading to diffusion inhibition

Abstract

Network motifs are patterns of over-represented node interactions in a network which have been previously used as building blocks to understand various aspects of the social networks. In this paper, we use motif patterns to characterize the information diffusion process in social networks. We study the lifecycle of information cascades to understand what leads to saturation of growth in terms of cascade reshares, thereby resulting in expiration, an event we call “diffusion inhibition”. In an attempt to understand what causes inhibition, we use motifs to dissect the network obtained from information cascades coupled with traces of historical diffusion or social network links. Our main results follow from experiments on a dataset of cascades from the Weibo platform and the Flixster movie ratings. We observe the temporal counts of 5-node undirected motifs from the cascade temporal networks leading to the inhibition stage. Empirical evidences from the analysis lead us to conclude the following about stages preceding inhibition: (1) individuals tend to adopt information more from users they have known in the past through social networks or previous interactions thereby creating patterns containing triads more frequently than acyclic patterns with linear chains and (2) users need multiple exposures or rounds of social reinforcement for them to adopt an information and as a result information starts spreading slowly thereby leading to the death of the cascade. Following these observations, we use motif-based features to predict the edge cardinality of the network exhibited at the time of inhibition. We test features of motif patterns using regression models for both individual patterns and their combination and we find that motifs as features are better predictors of the future network organization than individual node centralities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    http://www.wise2012.cs.ucy.ac.cy/challenge.html

References

  1. Alon Uri (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  Google Scholar 

  2. Sarajlic O, Yaveroglu A, Malod-Dognin N, Przulj N (2016) Graphlet-based characterization of directed networks. Sci Rep 6:35098

    Article  Google Scholar 

  3. Babai László, Luks Eugene M (1983) Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pp 171–183, New York, NY, USA

  4. Bao Q, Cheung William K, Liu J (2016) Inferring motif-based diffusion models for social networks. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp 3677–3683

  5. Benson Austin R, Gleich David F, Leskovec Jure (2016) Higher-order organization of complex networks. Science 353(6295):163–166

    Article  Google Scholar 

  6. Berlusconi Giulia, Calderoni Francesco, Parolini Nicola, Verani Marco, Piccardi Carlo (2016) Link prediction in criminal networks: a tool for criminal intelligence analysis. PLOS One 11:04

    Article  Google Scholar 

  7. Björklund Andreas, Husfeldt Thore, Kaski Petteri, Koivisto Mikko (2012) The traveling salesman problem in bounded degree graphs. ACM Trans Algorithms 8(2):18:1–18:13

    MathSciNet  Article  Google Scholar 

  8. Chakraborty T, Ganguly N, Mukherjee A (2015) An author is known by the context she keeps: significance of network motifs in scientific collaborations. Soc Netw Anal Mining 5(1):16

    Article  Google Scholar 

  9. Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, pp 925–936, New York, NY, USA

  10. Cheng J, Adamic LA, Kleinberg JM, Leskovec J (2016) Do cascades recur? In: Proceedings of the 25th International Conference on World Wide Web, WWW ’16

  11. Ciriello Giovanni, Guerra Concettina (2008) A review on models and algorithms for motif discovery in protein protein interaction networks. Briefings Fun Genom 7(2):147

    Article  Google Scholar 

  12. Cui P, Jin S, Yu L, Wang F, Zhu W, Yang S (2013) Cascading outbreak prediction in networks: A data-driven approach. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp 901–909, New York, NY, USA

  13. David Easley, Jon Kleinberg (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, New York

    Google Scholar 

  14. Vicario Michela Del, Bessi Alessandro, Zollo Fabiana, Petroni Fabio, Scala Antonio, Caldarelli Guido, Stanley H Eugene, Quattrociocchi Walter (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559

    Article  Google Scholar 

  15. Derényi Imre, Palla Gergely, Vicsek Tamás (2005) Clique percolation in random networks. Phys Rev Lett 94:160202

    Article  Google Scholar 

  16. Domingos P (2005) Mining social networks for viral marketing. IEEE Intell Syst 20(1):80–82

    MathSciNet  Article  Google Scholar 

  17. Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) \(k\)-core organization of complex networks. Phys Rev Lett 96:040601

    Article  Google Scholar 

  18. Farajtabar M, Wang Y, Gomez-Rodriguez M, Li S, Zha H, Song L (2015) Coevolve: a joint point process model for information diffusion and network co-evolution. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in Neural Information Processing Systems 28, pp 1945–1953

  19. Fire M, Tenenboim L, Lesser O, Puzis R, Rokach L, Elovici Y (2011) Link prediction in social networks using computationally efficient topological features. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing

  20. Gallos L, Havlin S, Kitsak M, Liljeros F, Makse H, Muchnik L, Stanley H (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893

    Article  Google Scholar 

  21. Goel S, Watts DJ, Goldstein DG (2012) The structure of online diffusion networks. In: Proceedings of the 13th ACM conference on electronic commerce, pp 623–638

  22. Gomez-Rodriguez M, Balduzzi D, Schölkopf B (2011) Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28–July 2, 2011, pp 561–568

  23. Gomez Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, New York, NY, USA

  24. Guo Ruocheng, Shaabani Elham, Bhatnagar Abhinav, Shakarian Paulo (2016) Toward early and order-of-magnitude cascade prediction in social networks. Soc Netw Anal Mining 6(1):64:1–64:18

    Google Scholar 

  25. Hocevar Tomaz, Demsar Janez (2014) A combinatorial approach to graphlet counting. Bioinformatics 30(4):559

    Article  Google Scholar 

  26. Huang Z, Li X, Chen H (2005) Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’05, pp 141–142, New York, NY, USA

  27. Ingram PJ, Stumpf MPH, Stark J (2006) Network motifs: structure does not determine function. BMC Genom 7(1):108

    Article  Google Scholar 

  28. Kang Chanhyun, Kraus Sarit, Molinaro Cristian, Spezzano Francesca, Subrahmanian VS (2016) Diffusion centrality: a paradigm to maximize spread in social networks. Artif Intell 239:70–96

    MathSciNet  Article  Google Scholar 

  29. Katona Zsolt, Zubcsek Peter Pal, Sarvary Miklos (2011) Network effects and personal influences: the diffusion of an online social network. J Market Res 48(3):425–443

    Article  Google Scholar 

  30. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, New York, NY, USA

  31. Kim M, Leskovec J (2011) The network completion problem: inferring missing nodes and edges in networks. In SDM, pp 47–58

  32. Kovanen Lauri, Kaski Kimmo, Kertsz Jnos, Saramki Jari (2013) Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc Natl Acad Sci 110(45):18070–18075

    Article  Google Scholar 

  33. Budka M, Juszczyszyn K, Musial K (2011) Link prediction based on subgraph evolution in dynamic social networks, pp 27–34

  34. Lahiri M, Berger-Wolf TY (2007) Structure prediction in temporal networks using frequent subgraphs

  35. Leskovec Jure, Singh Ajit, Kleinberg Jon (2006) Patterns of influence in a recommendation network. Springer, Berlin, pp 380–389

    Google Scholar 

  36. Liben-Nowell David, Kleinberg Jon (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031

    Article  Google Scholar 

  37. Liu Kai, Cheung WK, Liu J (2013) Detecting stochastic temporal network motifs for human communication patterns analysis. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’13

  38. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  Google Scholar 

  39. Milo Ron, Itzkovitz Shalev, Kashtan Nadav, Levitt Reuven, Shen-Orr Shai, Ayzenshtat Inbal, Sheffer Michal, Alon Uri (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

    Article  Google Scholar 

  40. Moores Geoffrey, Shakarian Paulo, Macdonald Brian, Howard Nicholas (2014) Finding near-optimal groups of epidemic spreaders in a complex network. PLOS One 9:04

    Article  Google Scholar 

  41. Ogata Yosihiko (1998) Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics 50

  42. Palla Gergely, Pollner Péter, Barabási Albert-László, Vicsek Tamás (2009) Social group dynamics in networks. Springer, Berlin, pp 11–38

    Google Scholar 

  43. Peixoto Tiago P (2014) The graph-tool python library. figshare

  44. Rizoiu MA, Xie L, Sanner S, Cebrián M, Yu H, Van Hentenryck P (2017) Expecting to be hip: Hawkes intensity processes for social media popularity. In WWW

  45. Rozenshtein P, Gionis A, Prakash BA, Vreeken J (2016) Reconstructing an epidemic over time. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp 1835–1844, New York, NY, USA

  46. Sarkar Soumajyoti, Guo Ruocheng, Shakarian Paulo (2017) Understanding and forecasting lifecycle events in information cascades. Soc Netw Anal Mining 7(1):55

    Article  Google Scholar 

  47. Andrade Jr Jos S, Zheng Z, Pei S, Muchnik L, Makse HA (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547

    Google Scholar 

  48. Shakarian P, Bhatnagar A, Aleali A, Shaabani E, Guo R (2015) Diffusion in social networks. pp 47–58

  49. Shakarian P, Paulo D (2012) Large social networks can be targeted for viral marketing with small seed sets. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), ASONAM ’12, Washington, DC, USA. IEEE Computer Society

  50. Ron Milo, Shmoolik Mangan, Uri Alon, Shen-Orr Shai S (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Rev Genet 31:64–68

    Article  Google Scholar 

  51. Steeg GV, Ghosh R, Lerman K (2011) What stops social epidemics? In ICWSM. The AAAI Press

  52. Tibshirani Robert (1994) Regression shrinkage and selection via the lasso. J R Stat Soc, Series B 58:267–288

    MathSciNet  MATH  Google Scholar 

  53. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42

    MathSciNet  Article  Google Scholar 

  54. Wernicke Sebastian (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinf 3(4):347–359

    Article  Google Scholar 

  55. Wernicke Sebastian, Rasche Florian (2006) Fanmod: a tool for fast network motif detection. Bioinformatics 22(9):1152

    Article  Google Scholar 

  56. Wong E, Baur B, Quader S, Huang CH (2012) Biological network motif detection: principles and practice. In: Briefings in Bioinformatics

  57. Xie J, Yan W (2007) Pattern-based characterization of time series

  58. Yang SH, Zha H (2013) Mixture of mutually exciting processes for viral diffusion. In: Proceedings of the 30th International Conference on Machine Learning, volume 28, Proceedings of Machine Learning Research, Atlanta, Georgia, USA

  59. Yang SH, Zha H (2013) Mixture of mutually exciting processes for viral diffusion. In: Proceedings of the 30th International Conference on International Conference on Machine Learning—Volume 28, ICML’13

  60. Yu H, Xie L, Sanner S (2015) The lifecyle of a youtube video: Phases, content and popularity. In: Proceedings of the Ninth International Conference on Web and Social Media, ICWSM 2015, University of Oxford, Oxford, UK, May 26–29, 2015, pp 533–542

  61. Yuan Ming, Lin Yi (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc, Ser B 68:49–67

    MathSciNet  Article  Google Scholar 

  62. Zhao Q, Erdogdu MA, He HY, Rajaraman A, Leskovec J (2015) Seismic: a self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp 1513–1522, New York, NY, USA

  63. Zhao Y, Levina E, Zhu J (2011) Community extraction for social networks. Proceedings of the National Academy of Sciences 108(18)

Download references

Acknowledgements

Some of the authors are supported through the AFOSR Young Investigator Program (YIP) grant FA9550-15-1-0159, ARO grant W911NF-15-1-0282, and the DoD Minerva program grant N00014-16-1-2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soumajyoti Sarkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Guo, R. & Shakarian, P. Using network motifs to characterize temporal network evolution leading to diffusion inhibition. Soc. Netw. Anal. Min. 9, 14 (2019). https://doi.org/10.1007/s13278-019-0556-z

Download citation

Keywords

  • Information cascades
  • Network motifs
  • Temporal network structure
  • Network inhibitions