Review of social media analytics process and Big Data pipeline

  • Hiba Sebei
  • Mohamed Ali Hadj Taieb
  • Mohamed Ben Aouicha
Review Article


Social media analytics is a research axis focused on extracting useful insights from social media data, with the aim of helping individuals and organizations take the most optimum decisions regarding several disciplines of life (business, marketing, politics, health, etc.). In this respect, social networks, microblogging, and media-sharing websites represent striking instances of online social media, as constructed under the Web 2.0 associated technologies, targeted to promote the interaction between users and these websites, while shifting the user’s position from that of a mere consumer to that of a social data producer. Hence, huge amounts of social data turn out to be issued, thus turning into critical sources of Big Data. Actually, the traditional media analytical techniques seem obsolete and inadequate to process this huge array of unstructured social media and capture the massive data range, mainly the shifting from the batch scale to the streaming one. Such a process has culminated in injecting Big Data technologies throughout the analysis process. So, the present survey is targeted to help the concerned researchers identify the challenges encountered during the analysis process along with Big Data solutions. Indeed, the aim lies in providing a clear analytical process applicable with Big Data technologies. A systematic literature review is conducted to address the challenges facing integration of Big Data technologies, while displaying some adequate solutions. Following extensive literature search, an overall global view concerning the superposition of the social media analytics and Big Data technologies has been drawn and discussed, along with a promising potential research trend.


Big Data pipeline Online social media Social Big Data Social media analytics Big Data challenges Big Data technologies 


  1. Aasman J (2006) Allegro graph: RDF triple database. Oakland Franz Incorporated, CidadeGoogle Scholar
  2. Abbasi A, Adjeroh DA, Dredze M, Paul MJ, Zahedi FM, Zhao H, Walia N et al (2014) Social media analytics for smart health. IEEE Intell Syst 29(2):60–80CrossRefGoogle Scholar
  3. Abramova V, Bernardino J (2013) NoSQL databases: MongoDB vs cassandra. In: Proceedings of the international C* conference on computer science and software engineering, ACM, pp 14–22Google Scholar
  4. Achrekar H, Gandhe A, Lazarus R, Yu S-H, Liu B (2011) Predicting flu trends using twitter data. In: Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE, pp 702–707Google Scholar
  5. Ackoff RL (1989) From data to wisdom. J Appl Syst Anal 16(1):3–9Google Scholar
  6. Agrawal D, Bernstein P, Bertino E, Davidson S, Dayal U, Franklin M, Gehrke J, Haas L, Halevy A, Han J, Jagadish HV, Labrinidis A, Madden S, Papakonstantinou Y, Patel JM, Ramakrishnan R, Ross K, Shahabi C, Suciu D, Vaithyanathan S, Widom J (2012) Challenges and opportunities with big data—a community white paper developed by leading researchers across the United States.
  7. Agrawal R, Kadadi A, Dai X, Andres F (2015) Challenges and opportunities with big data visualization. In: Proceedings of the 7th international conference on management of computational and collective intElligence in digital EcoSystems, ACM, pp 169–173Google Scholar
  8. Ahamed BB, Ramkumar T, Hariharan S (2014) Data integration progression in large data source using mapping affinity. In: 7th International conference on advanced software engineering and its applications (ASEA), IEEE, pp 16–21Google Scholar
  9. Ashwin KTK, Kammarpally P, George KM (2016) Veracity of information in twitter data: a case study. In: IEEE Computer Society BigComp, pp 129–136Google Scholar
  10. Atikoglu B, Xu Y, Frachtenberg E, Jiang S, Paleczny M (2012) Workload analysis of a large-scale key-value store. In: Harrison PG, Arlitt MF, Casale G (eds) SIGMETRICS. ACM, New York, pp 53–64Google Scholar
  11. Avvenuti M, Cresci S, Marchetti A, Meletti C, Tesconi M (2014) EARS (earthquake alert and report system): a real time decision support system for earthquake crisis management. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1749–1758Google Scholar
  12. Avvenuti M, Cresci S, Marchetti A, Meletti C, Tesconi M (2016) Predictability or early warning: using social media in modern emergency response. IEEE Internet Comput 20(6):4–6CrossRefGoogle Scholar
  13. Baquero AV, Palacios RC, Molloy O (2016) Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics Inform 33(3):793–807CrossRefGoogle Scholar
  14. Baskar S, Arockiam L, Charles S (2013) A systematic approach on data pre-processing in data mining. Compusoft 2(11):335Google Scholar
  15. Batrinca B, Treleaven PC (2015) Social media analytics: a survey of techniques, tools and platforms. AI Soc 30:89–116CrossRefGoogle Scholar
  16. Belcastro L, Marozzo F, Talia D (2018) Programming models and systems for Big Data analysis. Int J Parallel Emerg Distrib Syst.
  17. Bermbach D, Müller S, Eberhardt J, Tai S (2015) Informed schema design for column store-based database services. In: SOCA, IEEE Computer Society, pp 163–172Google Scholar
  18. Bhuta S, Doshi A, Doshi U, Narvekar M (2014) A review of techniques for sentiment analysis Of Twitter data. In: International conference on issues and challenges in intelligent computing techniques (ICICT), IEEE, pp. 583–591Google Scholar
  19. Bocconi S, Bozzon A, Psyllidis A, Bolivar CT, Houben G-J (2015) Social glass: a platform for urban analytics and decision-making through heterogeneous social data. In: Gangemi A, Leonardi S, Panconesi A (eds) WWW (companion volume). ACM, New York, pp 175–178CrossRefGoogle Scholar
  20. Bohlouli M, Dalter J, Dornhöfer M, Zenkert J, Fathi M (2015) Knowledge discovery from social media using big data-provided sentiment analysis (SoMABiT). J Inf Sci 41(6):779–798CrossRefGoogle Scholar
  21. Bothos E, Apostolou D, Mentzas G (2010) Using social media to predict future events with agent-based markets. IEEE Intell Syst 25(6):50–58CrossRefGoogle Scholar
  22. Cambria E, Wang H, White B (2014) Guest editorial: big social data analysis. Knowl-Based Syst 69:1–2CrossRefGoogle Scholar
  23. Cao J, Chawla S, Wang Y, Wu H (2017) Programming platforms for Big Data analysis. In: Handbook of big data technologies. Springer, pp 65–99Google Scholar
  24. Carlson JL (2013) Redis in action. Manning Publications Co., Shelter IslandGoogle Scholar
  25. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T et al (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4CrossRefGoogle Scholar
  26. Chang RM, Kauffman RJ, Kwon Y (2014) Understanding the paradigm shift to computational social science in the presence of big data. Decis Support Syst 63:67–80CrossRefGoogle Scholar
  27. Chen CP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci 275:314–347CrossRefGoogle Scholar
  28. Chen M, Ebert D, Hagen H, Laramee RS, Van Liere R, Ma K-L, Ribarsky W et al (2009) Data, information, and knowledge in visualization. IEEE Comput Gr Appl 29(1):1–10CrossRefGoogle Scholar
  29. Cheng X, Liu J, Dale C (2013) Understanding the characteristics of internet short video sharing: a YouTube-based measurement study. IEEE Trans Multimed 15(5):1184–1194CrossRefGoogle Scholar
  30. Ching A, Edunov S, Kabiljo M, Logothetis D, Muthukrishnan S (2015) One Trillion edges: graph processing at Facebook-scale. PVLDB 8:1804–1815Google Scholar
  31. Chintapalli S, Dagit D, Evans B, Farivar R, Graves T, Holderbaugh M, Liu Z, Nusbaum K, Patil K, Peng B, Poulosky P (2016) Benchmarking streaming computation engines: storm, flink and spark streaming. In: IPDPS workshops, IEEE Computer Society, pp 1789–1792Google Scholar
  32. Chodorow K (2013) MongoDB: the definitive guide. O”Reilly Media, Inc., NewtonGoogle Scholar
  33. Corbellini A, Mateos C, Zunino A, Godoy D, Schiaffino S (2017) Persisting big-data: the NoSQL landscape. Inf Syst 63:1–23CrossRefGoogle Scholar
  34. Cormode G, Krishnamurthy B (2008) Key differences between Web 1.0 and Web 2.0. First Monday 13(6)Google Scholar
  35. Dang Y, Zhang Y, Hu PJ-H, Brown SA, Ku Y, Wang J-H, Chen H (2014) An integrated framework for analyzing multilingual content in Web 2.0 social media. Decis Support Syst 61:126–135CrossRefGoogle Scholar
  36. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRefGoogle Scholar
  37. Dean J, Ghemawat S (2010) MapReduce: a flexible data processing tool. Commun ACM 53:72–77CrossRefGoogle Scholar
  38. Dredze M (2012) How social media will change public health. IEEE Intell Syst 27(4):81–84CrossRefGoogle Scholar
  39. Elgendy N, Elragal A (2014) Big data analytics: a literature review paper. In Perner P (eds) Advances in data mining. Applications and theoretical aspects. ICDM. Lecture notes in computer science, vol 8557. Springer, ChamGoogle Scholar
  40. Esposito C, Ficco M, Palmieri F, Castiglione A (2015) A knowledge-based platform for Big Data analytics based on publish/subscribe services and stream processing. Knowl-Based Syst 79:3–17CrossRefGoogle Scholar
  41. Fan W, Bifet A (2013) Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsl 14(2):1–5CrossRefGoogle Scholar
  42. Furht B, Villanustre F (2016) Introduction to Big Data. Big Data technologies and applications. Springer, Berlin, pp 3–11CrossRefGoogle Scholar
  43. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag 35(2):137–144CrossRefGoogle Scholar
  44. Auradkar A, Botev C, Das S, De Maagd D, Feinberg A, Ganti P, Gao L, et al. (2012) Data infrastructure at linkedin. In: IEEE 28th international conference on data engineering (ICDE), IEEE, pp 1370–1381Google Scholar
  45. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. ACM SIGOPS operating systems review, vol 37. ACM, New York, pp 29–43Google Scholar
  46. Han J, Kamber M, Pei J (2011a) Data mining: concepts and techniques. Elsevier, AmsterdamzbMATHGoogle Scholar
  47. Han J, Haihong E, Le G, Du J (2011b) Survey on NoSQL database. In: 6th international conference on pervasive computing and applications (ICPCA), IEEE, pp 363–366Google Scholar
  48. Haryadi AF, Hulstijn J, Wahyudi A, Voort H, van der, Janssen M (2016) Antecedents of big data quality: an empirical examination in financial service organizations. In: IEEE international conference on Big Data (Big Data), IEEE, pp 116–121Google Scholar
  49. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115CrossRefGoogle Scholar
  50. He W, Wang F-K, Akula V (2017) Managing extracted knowledge from big social media data for business decision making. J Knowl Manag 21(2):275–294CrossRefGoogle Scholar
  51. Hiba S, Mohamed Ali HT, Mohamed BA (2018) Popularity metrics’ normalization for social media entities. In: 20th International Conference on Enterprise Information Systems, pp 525–535Google Scholar
  52. Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRefGoogle Scholar
  53. Imran M, Castillo C, Diaz F, Vieweg S (2015) Processing social media messages in mass emergency: a survey. ACM Comput Surv 47(4):67CrossRefGoogle Scholar
  54. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS operating systems review, ACM, vol 41, pp 59–72Google Scholar
  55. Jagadish H, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R, Shahabi C (2014) Big data and its technical challenges. Commun ACM 57(7):86–94CrossRefGoogle Scholar
  56. Ji X, Chun SA, Cappellari P, Geller J (2017) Linking and using social media data for enhancing public health analytics. J Inf Sci 43(2):221–245CrossRefGoogle Scholar
  57. Jure L (2011) Social media analytics: tracking, modeling and predicting the flow of information through networks. In: Proceedings of the 20th international conference companion on World wide web (WWW ‘11). ACM, New York, NY, USA, pp 277–278Google Scholar
  58. Kaisler SH, Armour F, Espinosa JA, Money WH (2013) Big Data: issues and challenges moving forward. In: IEEE Computer Society HICSS, pp 995–1004Google Scholar
  59. Kanhabua N, Romano S, Stewart A, Nejdl W (2012a) Supporting temporal analytics for health-related events in microblogs. In: Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM’12, ACM, Maui, Hawaii, pp 2686–2688Google Scholar
  60. Kaplan AM, Haenlein M (2010) Users of the world, unite! The challenges and opportunities of Social Media. Bus Horiz 53(1):59–68CrossRefGoogle Scholar
  61. Karpenko A, Aarabi P (2011) Tiny videos: a large data set for nonparametric video retrieval and frame classification. IEEE Trans Pattern Anal Mach Intell 33(3):618–630CrossRefGoogle Scholar
  62. Khan N, Yaqoob I, Hashem IAT, Inayat Z, Mahmoud Ali WK, Alam M, Shiraz M et al (2014) Big data: survey, technologies, opportunities, and challenges. Sci World J 2014:1–18Google Scholar
  63. Kotsilieris T, Pavlaki A, Christopoulou SC, Anagnostopoulos I (2017) The impact of social networks on health care. Social Netw Anal Min 7(1):18:1–18:6Google Scholar
  64. Kumar V, Chadha A (2012) Mining association rules in student’s assessment data. Int J Comput Sci Issues 9(5):211–216Google Scholar
  65. Lennon, J. (2009). Introduction to couchdb. Beginning CouchDB, pp 3–9Google Scholar
  66. Li N, Wu DD (2010) Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decis Support Syst 48(2):354–368CrossRefGoogle Scholar
  67. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proc VLDB Endow 5(8):716–727CrossRefGoogle Scholar
  68. Magnusson J (2012) Social network analysis utilizing Big Data Technology.
  69. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD international conference on management of data, ACM, pp 135–146Google Scholar
  70. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A (2011) Big Data: the next frontier for innovation, competition, and productivityGoogle Scholar
  71. Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: can we trust what we RT? In: Giles CL, Mitra P, Perisic I, Yen J, Zhang H (eds) SOMA@KDD. ACM, New York, pp 71–79Google Scholar
  72. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J et al (2016) Mllib: machine learning in apache spark. J Mach Learn Res 17(34):1–7MathSciNetzbMATHGoogle Scholar
  73. Middleton SE, Middleton L, Modafferi S (2014) Real-time crisis mapping of natural disasters using social media. IEEE Intell Syst 29(2):9–17CrossRefGoogle Scholar
  74. Mikolov T, Deoras A, Povey D, Burget L, Cernock J (2011) Strategies for training large scale neural network language models. In: IEEE Workshop on automatic speech recognition and understanding (ASRU), IEEE, pp 196–201Google Scholar
  75. Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform. In: IEEE international conference on data mining workshops (ICDMW), IEEE, pp 170–177Google Scholar
  76. Newman R, Chang V, Walters RJ, Wills GB (2016) Web 2.0–the past and the future. Int J Inf Manag 36(4):591–598CrossRefGoogle Scholar
  77. Nguyen DT, Hwang D, Jung JJ (2014) Time-frequency social data analytics for understanding social big data. In: IDC, Studies in Computational Intelligence, vol 570. Springer, pp 223–228Google Scholar
  78. Oh C, Sasser S, Almahmoud S (2015) Social media analytics framework: the case of Twitter and Super Bowl ads. J Inf Technol Manag 26(1):1–18Google Scholar
  79. Olshannikova E, Ometov A, Koucheryavy Y, Olsson T (2016) Visualizing Big Data. In: Big Data technologies and applications, Springer, pp 101–131Google Scholar
  80. Orgaz GB, Jung JJ, Camacho D (2016) Social big data: recent achievements and new challenges. Inf Fus 28:45–59CrossRefGoogle Scholar
  81. Oussous A, Benjelloun F-Z, Lahcen AA, Belfkih S (2017) Big Data technologies: a survey. J King Saud Univ Comput Inf Sci.
  82. Owen S, Owen S (2012) Mahout in action. Manning Publications Co., Shelter IslandGoogle Scholar
  83. Peng S, Wang G, Xie D (2017) Social influence analysis in social networking big data: opportunities and challenges. IEEE Netw 31(1):11–17CrossRefGoogle Scholar
  84. Radicati S, Hoang Q (2011) Email statistics report 2011–2015. The Radicati Group, Inc. A Technology Market Research FirmGoogle Scholar
  85. Rahmani A, Chen AC-L, Sarhan A, Jida J, Rifaie M, Alhajj R (2014) Social media analysis and summarization for opinion mining: a business case study. Social Netw Anal Min 4(1):171CrossRefGoogle Scholar
  86. Reuter C, Scholl S (2014) Technical limitations for designing applications for social media. In: Butz A, Koch M, Schlichter JH (eds) Mensch & Computer workshop band. De Gruyter Oldenbourg, Berlin, pp 131–139Google Scholar
  87. Rowley J (2007) The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Sci 33(2):163–180CrossRefGoogle Scholar
  88. Sakaki T, Okazaki M, Matsuo Y (2013) Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans Knowl Data Eng 25(4):919–931CrossRefGoogle Scholar
  89. Sakr S (2016) Large-scale graph processing systems. In: Big Data 2.0 Processing Systems: A Survey, Springer, Cham, pp 53–73Google Scholar
  90. Santhanam T, Padmavathi M (2014) Comparison of K-means clustering and statistical outliers in reducing medical datasets. In: International conference on science engineering and management research (ICSEMR), IEEE, pp 1–6Google Scholar
  91. Sapountzi A, Psannis KE (2016) Social networking data analysis tools & challenges. Future Gener Comput Sys.
  92. Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data: How innovative enterprises extract value from uncertain data, Executive Report. In: IBM Institute for Business Value and Said Business School at the University of OxfordGoogle Scholar
  93. Selvan LGS, Moh T-S (2015) A framework for fast-feedback opinion mining on Twitter data streams. In: CTS, IEEE, pp 314–318Google Scholar
  94. Siddiqa A, Hashem IAT, Yaqoob I, Marjani M, Shamshirband S, Gani A, Nasaruddin F (2016) A survey of big data management: taxonomy and state-of-the-art. J Netw Comput Appl 71:151–166CrossRefGoogle Scholar
  95. Siddiqa A, Karim A, Gani A (2017) Big data storage technologies: a survey. Front IT & EE 18:1040–1070Google Scholar
  96. Skoric MM, Poor ND, Achananuparp P, Lim E-P, Jiang J (2012) Tweets and votes: a study of the 2011 Singapore General Election. In: IEEE Computer Society, HICSS, pp 2583–2591Google Scholar
  97. Stenmark D (2002) Information vs. knowledge: the role of intranets in knowledge management. In: Proceedings of HICSS. IEEE PressGoogle Scholar
  98. Stieglitz S, Dang-Xuan L (2013) Social media and political communication: a social media analytics framework. Soc Netw Anal Min 3(4):1277–1291CrossRefGoogle Scholar
  99. Stieglitz S, Dang-Xuan L, Bruns A, Neuberger C (2014) Social media analytics. Wirtschaftsinformatik 56(2):101–109CrossRefGoogle Scholar
  100. Stieglitz S, Mirbabaie M, Ross B, Neuberger C (2018) Social media analytics—challenges in topic discovery, data collection, and data preparation. Int J Inf Manag 39:156–168CrossRefGoogle Scholar
  101. Storey VC, Song I-Y (2017) Big data technologies and management: what conceptual modeling can do. Data Knowl Eng 108:50–67CrossRefGoogle Scholar
  102. Strohbach M, Daubert J, Ravkin H, Lischka M (2016) Big data storage. In: New horizons for a data-driven economy, Springer, Cham, pp 119–141Google Scholar
  103. Taylor RC (2010) An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics. BMC Bioinf 11(12):S1CrossRefGoogle Scholar
  104. Uddin MF, Gupta N et al. (2014) Seven V’s of Big Data understanding Big Data to extract value. In: American Society for Engineering Education (ASEE Zone 1), Zone 1 Conference of the IEEE, pp 1–5Google Scholar
  105. Vatrapu R, Mukkamala RR, Hussain A, Flesch B (2016) Social set analysis: a set theoretical approach to big data analytics. IEEE Access 4:2542–2571CrossRefGoogle Scholar
  106. Vickery G, Wunsch-Vincent S (2007) Participative web and user-created content: Web 2.0 wikis and social networking. Organization for Economic Cooperation and Development (OECD)Google Scholar
  107. Wang WY, Pauleen DJ, Zhang T (2016) How social media applications affect B2B communication and improve business performance in SMEs. Ind Mark Manag 54:4–14CrossRefGoogle Scholar
  108. Wang H, Xu Z, Pedrycz W (2017) An overview on the roles of fuzzy set techniques in big data processing: trends, challenges and opportunities. Knowl-Based Syst 118:15–30CrossRefGoogle Scholar
  109. White T (2012) Hadoop: the definitive guide. O”Reilly Media, NewtonGoogle Scholar
  110. Win SSM, Aung TN (2017) Target oriented tweets monitoring system during natural disasters. In: Uehara K, Nakamura M (eds) ICIS, IEEE Computer Society, pp 143–148Google Scholar
  111. Wu Y, Cao N, Gotz D, Tan Y-P, Keim DA (2016) A survey on visual analytics of social media data. IEEE Trans Multimed 18:2135–2148CrossRefGoogle Scholar
  112. Wu D, Sakr S, Zhu L (2017) Big data storage and data models. In: Handbook of big data technologies, Springer, Cham, pp 3–29Google Scholar
  113. Xin R, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I (2012) Shark: SQL and rich analytics at scale. CoRR. abs/1211.6176Google Scholar
  114. Yaqoob I, Hashem IAT, Gani A, Mokhtar S, Ahmed E, Anuar NB, Vasilakos AV (2016) Big data: from beginning to future. Int J Inf Manag 6(6):1231–1247CrossRefGoogle Scholar
  115. Yaqub U, Chun SA, Atluri V, Vaidya J (2017) Sentiment based analysis of tweets during the US Presidential Elections. In: Hinnant CC, Ojo A (eds) DG.O, ACM, New York, pp 1–10Google Scholar
  116. Zeng D, Chen H, Lusch R, Li S-H (2010) Social media analytics and intelligence. IEEE Intell Syst 25(6):13–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Multimedia, InfoRmation systems and Advanced Computing LaboratorySfax UniversitySfaxTunisia

Personalised recommendations