Advertisement

Tumor Biology

, Volume 37, Issue 12, pp 15913–15924 | Cite as

Transcriptomic characterization of differential gene expression in oral squamous cell carcinoma: a meta-analysis of publicly available microarray data sets

  • Yang Sun
  • Zhijian Sang
  • Qian Jiang
  • Xiaojun Ding
  • Youcheng Yu
Original Article

Abstract

Oral squamous cell carcinoma (OSCC) is a highly prevalent cancer worldwide, and OSCC often goes undiagnosed until advanced disease is present, which contributes to a low survival rate for OSCC patients. The identification of biomarkers for the early detection OSCC and novel therapeutic targets for OSCC treatment is an important research objective. We performed bioinformatics analyses of the gene expression profile of OSCC using microarray data to identify genes that contribute to the development of OSCC. We also predicted the transcription factors involved in the regulation of differential gene expression in OSCC. Our results showed that PI3K, EGFR, STAT1, and CPBP are important contributors to the changes in cellular physiology that occur during the development of OSCC. Therefore, these genes represent potential diagnostic biomarkers and therapeutic targets for OSCC.

Keywords

Head and neck squamous cell carcinoma (HNSCC) Oral squamous cell carcinoma (OSCC) Differentially expressed gene (DEG) Healthy oral squamous cell (HOSC) 

Notes

Acknowledgments

Funding for this study was provided by Zhongshan Hospital, Fudan University.

Compliance with ethical standards

Our study was approved by the Hospital Ethics Committee of Zhongshan Hospital and Fudan University (Shanghai, China), which determined that patient consent was not required for our analysis of publicly available data sets.

Conflict of interest

None.

Supplementary material

13277_2016_5439_MOESM1_ESM.xlsx (193 kb)
ESM 1 (XLSX 192 kb)
13277_2016_5439_MOESM2_ESM.xlsx (38 kb)
ESM 2 (XLSX 37 kb)
13277_2016_5439_MOESM3_ESM.xlsx (1.5 mb)
ESM 3 (XLSX 1497 kb)
13277_2016_5439_MOESM4_ESM.xlsx (389 kb)
ESM 4 (XLSX 389 kb)
13277_2016_5439_MOESM5_ESM.xlsx (110 kb)
ESM 5 (XLSX 109 kb)

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Boyle P, Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer; 2008.Google Scholar
  5. 5.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mazumder TH, Nath S, Nath N, Kumar M. Head and neck squamous cell carcinoma: prognosis using molecular approach. Central European Journal of Biology. 2014;9:593–613.Google Scholar
  7. 7.
    Brooks YS, Ostano P, Jo SH, Dai J, Getsios S, Dziunycz P, et al. Multifactorial ERbeta and NOTCH1 control of squamous differentiation and cancer. J Clin Invest. 2014;124:2260–76.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Islam M, Datta J, Lang JC, Teknos TN. Down regulation of RhoC by microRNA-138 results in de-activation of FAK, Src and Erk1/2 signaling pathway in head and neck squamous cell carcinoma. Oral Oncol. 2014;50:448–56.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Biswas NK, Das S, Maitra A, Sarin R, Majumder PP. Somatic mutations in arachidonic acid metabolism pathway genes enhance oral cancer post-treatment disease-free survival. Nat Commun. 2014;5:5835.CrossRefPubMedGoogle Scholar
  10. 10.
    Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3:770–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Yong-Deok K, Eun-Hyoung J, Yeon-Sun K, Kang-Mi P, Jin-Yong L, Sung-Hwan C, et al. Molecular genetic study of novel biomarkers for early diagnosis of oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2015;20:e167–79.CrossRefPubMedGoogle Scholar
  12. 12.
    Chang JT, Wang HM, Chang KW, Chen WH, Wen MC, Hsu YM, et al. Identification of differentially expressed genes in oral squamous cell carcinoma (OSCC): overexpression of NPM, CDK1 and NDRG1 and underexpression of CHES1. Int J Cancer. 2005;114:942–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Siddiqui AS, Delaney AD, Schnerch A, Griffith OL, Jones SJ, Marra MA. Sequence biases in large scale gene expression profiling data. Nucleic Acids Res. 2006;34:e83.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 2008;5:e184.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rung J, Brazma A. Reuse of public genome-wide gene expression data. Nat Rev Genet. 2013;14:89–99.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee YH, Nath SK. Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis. Hum Genet. 2005;118:434–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol BioSyst. 2014;10:2441–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Xia J, Fjell CD, Mayer ML, Pena OM, Wishart DS, Hancock RE. INMEX—a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res. 2013;41:W63–70.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee YH, Song GG. Meta-analysis of differentially expressed genes in ankylosing spondylitis. Genet Mol Res. 2015;14:5161–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Toro-Domínguez D, Carmona-Sáez P, Alarcón-Riquelme ME. Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren’s syndrome uncovered through gene expression meta-analysis. Arthritis Research & Therapy. 2014;16:489.CrossRefGoogle Scholar
  22. 22.
    Santiago JA, Potashkin JA. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc Natl Acad Sci U S A. 2015;112:2257–62.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Song GG, Kim JH, Seo YH, Choi SJ, Ji JD, Lee YH. Meta-analysis of differentially expressed genes in primary Sjogren’s syndrome by using microarray. Hum Immunol. 2014;75:98–104.CrossRefPubMedGoogle Scholar
  25. 25.
    Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol. 2007;25:663–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou XL, JH W, Wang XJ, Guo FJ. Integrated microRNA-mRNA analysis revealing the potential roles of microRNAs in tongue squamous cell cancer. Mol Med Rep. 2015;12:885–94.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, et al. From gene networks to gene function. Genome Res. 2003;13:2568–76.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang F, Hu S, Liu W, Qiao Z, Gao Y, Bu Z. Deep-sequencing analysis of the mouse transcriptome response to infection with Brucella melitensis strains of differing virulence. PLoS One. 2011;6:e28485.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wei Z, Li HA. Markov random field model for network-based analysis of genomic data. Bioinformatics. 2007;23:1537–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet. 2009;18:2078–90.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kong X, Ding X, Yang Q. Identification of multi-target effects of Huaier aqueous extract via microarray profiling in triple-negative breast cancer cells. Int J Oncol. 2015;46:2047–56.PubMedGoogle Scholar
  32. 32.
    van Breda SG, Claessen SM, Lo K, van Herwijnen M, Brauers KJ, Lisanti S et al. Epigenetic mechanisms underlying arsenic-associated lung carcinogenesis. Arch Toxicol. 2014.Google Scholar
  33. 33.
    Prieto C, Risueno A, Fontanillo C. De las Rivas J. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One. 2008;3:e3911.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vermeirssen V, Barrasa MI, Hidalgo CA, Babon JA, Sequerra R, Doucette-Stamm L, et al. Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Res. 2007;17:1061–71.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang J, Ni Z, Duan Z, Wang G, Li F. Altered expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory genes in gastric cancer tissues. PLoS One. 2014;9:e99835.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4:R28.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa MKEGG. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP. Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer. 2005;114:806–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Heaton CM, Durr ML, Tetsu O, van Zante A. Wang SJ. TP53 and CDKN2a mutations in never-smoker oral tongue squamous cell carcinoma. Laryngoscope. 2014;124:E267–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Judd NP, Winkler AE, Murillo-Sauca O, Brotman JJ, Law JH, JS Jr L, et al. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness. Cancer Res. 2012;72:365–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim MJ, Kim KM, Kim J, Kim KN. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One. 2014;9:e108170.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Oliveira-Costa JP, Oliveira LR, Zanetti R, Zanetti JS, da Silveira GG, Chavichiolli Buim ME, et al. BRCA1 and gammaH2AX as independent prognostic markers in oral squamous cell carcinoma. Oncoscience. 2014;1:383–91.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yap L, Lee D, Khairuddin A, Pairan M, Puspita B, Siar C et al. The opposing roles of NOTCH signalling in head and neck cancer: a mini review. Oral Dis. 2015.Google Scholar
  44. 44.
    Vincent-Chong VK, Salahshourifar I, Karen-Ng LP, Siow MY, Kallarakkal TG, Ramanathan A et al. Overexpression of MMP13 is associated with clinical outcomes and poor prognosis in oral squamous cell carcinoma. Scientific World Journal. 2014;2014:897523.Google Scholar
  45. 45.
    Shieh TM, Lin SC, Liu CJ, Chang SS, TH K, Chang KW. Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis. Clin Cancer Res. 2007;13:4378–85.CrossRefPubMedGoogle Scholar
  46. 46.
    CQ X, Zhu ST, Wang M, Guo SL, Sun XJ, Cheng R, et al. Pathway analysis of differentially expressed genes in human esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2015;19:1652–61.Google Scholar
  47. 47.
    Gotte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene. 2010;29:6569–80.CrossRefPubMedGoogle Scholar
  48. 48.
    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.CrossRefPubMedGoogle Scholar
  49. 49.
    Jalouli J, Jalouli MM, Sapkota D, Ibrahim SO, Larsson PA, Sand L. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries. Anticancer Res. 2012;32:571–80.PubMedGoogle Scholar
  50. 50.
    Miller CS, Johnstone BM. Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:622–35.CrossRefPubMedGoogle Scholar
  51. 51.
    Syrjanen S, Lodi G, von Bultzingslowen I, Aliko A, Arduino P, Campisi G, et al. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis. 2011;17(Suppl 1):58–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Roizman B, Frenkel N. The transcription and state of herpes simplex virus DNA in productive infection and in human cervical cancer tissue. Cancer Res. 1973;33:1402–16.PubMedGoogle Scholar
  53. 53.
    Koffa M, Koumantakis E, Ergazaki M, Tsatsanis C, Spandidos DA. Association of herpesvirus infection with the development of genital cancer. Int J Cancer. 1995;63:58–62.CrossRefPubMedGoogle Scholar
  54. 54.
    zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;228:1056–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Wolf H, zur Hausen H, Becker V. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol. 1973;244:245–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Jiang X, Wang J, Chen X, Hong Y, Wu T, Chen X, et al. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation. Oncotarget. 2016;7:16262.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Jeon Y, Cho J, Lee S, Choi Y, Park H, Jung S, et al. Esculetin induces apoptosis through EGFR/PI3K/Akt signaling pathway and nucleophosmin relocalization. J Cell Biochem. 2016;117:1210.CrossRefPubMedGoogle Scholar
  58. 58.
    Lui VWY, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discovery. 2013;3:761.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lin C, Chou Y, Chiou H, Chen M, Yang W, Hsieh M, et al. Pterostilbene suppresses oral cancer cell invasion by inhibiting MMP-2 expression. Expert Opin Ther Targets. 2014;18:1109.CrossRefPubMedGoogle Scholar
  60. 60.
    Lin K, Chien C, Tseng C, Chen Y, Chang L, Lin S. Furano-1,2-naphthoquinone inhibits Src and PI3K/Akt signaling pathways in Ca9-22 human oral squamous carcinoma cells. Integrative Cancer Therapies. 2012;13:NP18.CrossRefPubMedGoogle Scholar
  61. 61.
    Shin JA, Ryu MH, Kwon KH, Choi B, Cho SD. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines. J Oral Pathol Med. 2014.Google Scholar
  62. 62.
    Li Q, Song X, Ji Y, Jiang H, Xu L. The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous cell carcinoma cell growth in vivo and in vitro. Biochem Biophys Res Commun. 2013;440:701.CrossRefPubMedGoogle Scholar
  63. 63.
    Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, et al. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2012;18:2558.CrossRefGoogle Scholar
  64. 64.
    Yu C, Hung S, Liao H, Lee C, Lin H, Lai H, et al. RAD001 enhances the radiosensitivity of SCC4 oral cancer cells by inducing cell cycle arrest at the G2/M checkpoint. Anticancer Res. 2014;34:2927.PubMedGoogle Scholar
  65. 65.
    Yu C-C, Huang H-b, Hung S-K, Liao H-F, Lee C-C, Lin H-Y et al. AZD2014 radiosensitizes oral squamous cell carcinoma by inhibiting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest. PLoS ONE. 2016, 11.Google Scholar
  66. 66.
    Su Y-C, Yu C-C, Hung S-K, Lin H-Y, Chan MW-Y, Huang H-B et al., editors. Effect of NVP-BEZ235, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, on radiosensitivity of oral cancer cell line through G2/M phase checkpoint regulation. ASCO Annual Meeting Proceedings; 2014.Google Scholar
  67. 67.
    Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P. Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Laboratory Investigation; a Journal of Technical Methods and Pathology. 2005;85:756.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014;5:e1155.CrossRefPubMedGoogle Scholar
  69. 69.
    Qian M, Qian D, Jing H, Li Y, Ma C, Zhou Y. Combined cetuximab and celecoxib treatment exhibits a synergistic anticancer effect on human oral squamous cell carcinoma in vitro and in vivo. Oncol Rep. 2014;32:1681–8.PubMedGoogle Scholar
  70. 70.
    TS W, Tan CT, Chang CC, Lin BR, Lai WT, Chen ST, et al. B-cell lymphoma/leukemia 10 promotes oral cancer progression through STAT1/ATF4/S100P signaling pathway. Oncogene. 2015;34:1207–19.CrossRefGoogle Scholar
  71. 71.
    Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRefGoogle Scholar
  72. 72.
    Teixeira MS, Camacho-Vanegas O, Fernandez Y, Narla G, DiFeo A, Lee B, et al. KLF6 allelic loss is associated with tumor recurrence and markedly decreased survival in head and neck squamous cell carcinoma. Int J Cancer. 2007;121:1976–83.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yang Sun
    • 1
  • Zhijian Sang
    • 1
  • Qian Jiang
    • 1
  • Xiaojun Ding
    • 1
  • Youcheng Yu
    • 1
  1. 1.Department of Stomatology, Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations