Tumor Biology

, Volume 37, Issue 12, pp 15977–15987 | Cite as

Long noncoding RNA expression profile of infantile hemangioma identified by microarray analysis

  • Xiaowen Liu
  • Renrong Lv
  • Linfeng Zhang
  • Guangqi Xu
  • Jianhai Bi
  • Feng Gao
  • Jian Zhang
  • Feng Xue
  • Fagang Wang
  • Yiliang Wu
  • Cong Fu
  • Qiang Wang
  • Ran Huo
Original Article


Infantile hemangioma (IH) is one of the most common vascular tumors of childhood. Long noncoding RNAs (lncRNAs) play a critical role in angiogenesis, but their involvement in hemangioma remains unknown. This study aimed to assess the expression profiles of lncRNAs in IH and adjacent normal tissue samples, exploring the biological functions of lncRNAs as well as their involvement in IH pathogenesis. The lncRNA expression profiles were determined by lncRNA microarrays. A total of 1259 and 857 lncRNAs were upregulated and downregulated in IH, respectively, at a fold change cutoff of 2.0 (p < 0.05); in addition, 1469 and 1184 messenger RNAs (mRNAs) were upregulated and downregulated, respectively (fold change cutoff of 2.0; p < 0.05). A total of 292 differentially expressed mRNAs were targeted by the lncRNAs with altered expression in hemangioma, including 228 and 64 upregulated and downregulated, respectively (cutoff of 2.0, p < 0.05). Gene ontology (GO) analyses revealed several angiogenesis-related pathways. An lncRNA-mRNA co-expression network for differentially expressed lncRNAs revealed significant associations of the lncRNAs MEG3, MEG8, FENDRR, and Linc00152 with their related mRNAs. The validation results of nine differentially expressed lncRNAs (MALAT1, MEG3, MEG8, p29066, p33867, FENDRR, Linc00152, p44557_v4, p8683) as well as two mRNAs (FOXF1, EGFL7) indicated that the microarray data correlated well with the QPCR results. Interestingly, MALAT1 knockdown induced apoptosis and S-phase cell cycle arrest in human umbilical vein endothelial cells (HUVECs). Overall, this study revealed the lncRNA expression profile of IH and that lncRNAs likely regulate several genes with important roles in angiogenesis.


Long noncoding RNA MALAT1 Infantile hemangioma Angiogenesis Microarrays 



This work was supported by the National Natural Science Foundation of China (Grant No. 81171828).

Compliance with ethical standards


This work was supported by the National Natural Science Foundation of China (Grant No. 81171828).

Conflicts of interest


Ethical approval

This study was approved by the ethics committee of Shandong Provincial Hospital, China (No. 2014-011).

Informed consent

Patient guardians provided verbal and written informed consent.

Supplementary material

13277_2016_5434_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
13277_2016_5434_Fig6_ESM.gif (352 kb)
Supplementary Figure 1

Hierarchical clustering analysis of 2116 differentially expressed long noncoding RNAs (lncRNAs) and 2653 differentially expressed mRNAs. Red and green indicate increased and reduced expression levels, respectively. In the heat map, columns represent samples and rows are the various genes. Scale of expression level is shown on the horizontal bar. (GIF 352 kb)

13277_2016_5434_MOESM2_ESM.tif (5 mb)
High resolution image (TIFF 5128 kb)


  1. 1.
    Hoornweg MJ, Smeulders MJ, van der Horst CM. Prevalence and characteristics of haemangiomas in young children. Ned Tijdschr Geneeskd. 2005;149(44):2455–8.PubMedGoogle Scholar
  2. 2.
    Kilcline C, Frieden IJ. Infantile hemangiomas: how common are they? A systematic review of the medical literature. Pediatr Dermatol. 2008;25(2):168–73. doi: 10.1111/j.1525-1470.2008.00626.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Léauté-Labrèze C, Prey S, Ezzedine K. Infantile haemangioma: part I. Pathophysiology, epidemiology, clinical features, life cycle and associated structural abnormalities. J Eur Acad Dermatol Venereol. 2011;25(11):1245–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Chiller KG, Passaro D, Frieden IJ. Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex. Arch Dermatol. 2002;138(12):1567–76.CrossRefPubMedGoogle Scholar
  5. 5.
    Dickison P, Christou E, Wargon OA. Prospective study of infantile hemangiomas with a focus on incidence and risk factors. Pediatr Dermatol. 2011;28(6):663–9. doi: 10.1111/j.1525-1470.2011.01568.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Bauland CG, Smit JM, Bartelink LR, Zondervan HA, Spauwen PH. Hemangioma in the newborn: increased incidence after chorionic villus sampling. Prenat Diagn. 2010;30(10):913–7. doi: 10.1002/pd.2562.CrossRefPubMedGoogle Scholar
  7. 7.
    Burton BK, Schulz CJ, Angle B, Burd LI. An increased incidence of haemangiomas in infants born following chorionic villus sampling (CVS. Prenat Diagn. 1995;15(3):209–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, et al. Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr. 2007;150(3):291–4. doi: 10.1016/j.jpeds.2006.12.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Selmin A, Foltran F, Chiarelli S, Ciullo R, Gregori D. An epidemiological study investigating the relationship between chorangioma and infantile hemangioma. Pathol Res Pract. 2014;210(9):548–53. doi: 10.1016/j.prp.2014.04.007.CrossRefPubMedGoogle Scholar
  10. 10.
    Munden A, Butschek R, Tom WL, Marshall JS, Poeltler DM, Krohne SE, et al. Prospective study of infantile haemangiomas: incidence, clinical characteristics and association with placental anomalies. Br J Dermatol. 2014;170(4):907–13. doi: 10.1111/bjd.12804.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Itinteang T, Withers AH, Davis PF, Tan ST. Biology of infantile hemangioma. Front Surg. 2014;1:38. doi: 10.3389/fsurg.2014.00038.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boscolo E, Bischoff J. Vasculogenesis in infantile hemangioma. Angiogenesis. 2009;12(2):197–207. doi: 10.1007/s10456-009-9148-2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang L, Nakayama H, Klagsbrun M, Mulliken JB, Bischoff J. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells. Stem Cells. 2015;33(1):133–45.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu D, TM O, Shartava A, Fowles TC, Yang J, Fink LM, et al. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol. 2011;4:54. doi: 10.1186/1756-8722-4-54.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greenberger S, Bischoff J. Pathogenesis of infantile haemangioma. Br J Dermatol. 2013;169(1):12–9. doi: 10.1111/bjd.12435.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Przewratil P, Sitkiewicz A, Andrzejewska E. Local serum levels of vascular endothelial growth factor in infantile hemangioma: intriguing mechanism of endothelial growth. Cytokine. 2010;49(2):141–7. doi: 10.1016/j.cyto.2009.11.012.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen XD, Ma G, Huang JL, Chen H, Jin YB, Ye XX, et al. Serum-level changes of vascular endothelial growth factor in children with infantile hemangioma after oral propranolol therapy. Pediatr Dermatol. 2013;30(5):549–53. doi: 10.1111/pde.12192.CrossRefPubMedGoogle Scholar
  18. 18.
    Zou HX, Jia J, Zhang WF, Sun ZJ, Zhao YF. Propranolol inhibits endothelial progenitor cell homing: a possible treatment mechanism of infantile hemangioma. Cardiovasc Pathol. 2013;22(3):203–10. doi: 10.1016/j.carpath.2012.10.001.CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang C, Lin X, Hu X, Chen H, Jin Y, Ma G, et al. Angiogenin: a potential serum marker of infantile hemangioma revealed by cDNA microarray analysis. Plast Reconstr Surg. 2014;134(2):231e–9e. doi: 10.1097/prs.0000000000000367.CrossRefPubMedGoogle Scholar
  20. 20.
    Stiles JM, Rowntree RK, Amaya C, Diaz D, Kokta V, Mitchell DC, et al. Gene expression analysis reveals marked differences in the transcriptome of infantile hemangioma endothelial cells compared to normal dermal microvascular endothelial cells. Vascular. Cell. 2013;5(1):6.Google Scholar
  21. 21.
    Calicchio M, Collins T. Hp. identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. Am J Pathol. 2009;174(5):1638–49.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Esteller M, Non-coding RNA. In human disease. Nat Rev Genet. 2011;12(12):861–74. doi: 10.1038/nrg3074.CrossRefPubMedGoogle Scholar
  23. 23.
    Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–97. doi: 10.1161/CIRCRESAHA.114.303265.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5:e1506. doi: 10.1038/cddis.2014.466.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med. 2015;19(6):1418–25.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, et al. Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology. 2010;151(6):2443–52. doi: 10.1210/en.2009-1151.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56(6):2231–41. doi: 10.1002/hep.25895.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu Z, Xiao Z, Liu F, Cui M, Li W, Yang Z et al. Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget. 2015. doi:10.18632/oncotarget.6280.Google Scholar
  29. 29.
    Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg. 2015:1–8. doi: 10.3171/2014.12.jns1426.
  30. 30.
    Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22. doi: 10.1093/nar/gkr483.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA. 2010;16(8):1478–87. doi: 10.1261/rna.1951310.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takeuchi K, Yanai R, Kumase F, Morizane Y, Suzuki J, Kayama M, et al. EGF-like-domain-7 is required for VEGF-induced Akt/ERK activation and vascular tube formation in an ex vivo angiogenesis assay. PLoS One. 2014;9(3):e91849. doi: 10.1371/journal.pone.0091849.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gu T, He H, Han Z, Zeng T, Huang Z, Liu Q, et al. Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development. Acta Histochem. 2012;114(4):392–9. doi: 10.1016/j.acthis.2011.07.009.CrossRefPubMedGoogle Scholar
  34. 34.
    Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14. doi: 10.1016/j.devcel.2012.12.012.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ren X, Ustiyan V, Pradhan A, Cai Y, Havrilak JA, Bolte CS, et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res. 2014;115(8):709–20. doi: 10.1161/circresaha.115.304382.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ji J, Tang J, Deng L, Xie Y, Jiang R, Li G et al. LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget. 2015. doi:10.18632/oncotarget.5970Google Scholar
  37. 37.
    Zhou J, Zhi X, Wang L, Wang W, Li Z, Tang J, et al. Linc00152 promotes proliferation in gastric cancer through the EGFR-dependent pathway. J Exp Clin Cancer Res. 2015;34(1):135. doi: 10.1186/s13046-015-0250-6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang SL, Wu C, Xiong ZF, Fang X. Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (review. Mol Med Rep. 2015;12(2):2411–6. doi: 10.3892/mmr.2015.3689.PubMedGoogle Scholar
  39. 39.
    Kanno T, Kamba T, Yamasaki T, Shibasaki N, Saito R, Terada N, et al. JunB promotes cell invasion and angiogenesis in VHL-defective renal cell carcinoma. Oncogene. 2012;31(25):3098–110.CrossRefPubMedGoogle Scholar
  40. 40.
    Shim M, Powers KL, Ewing SJ, Zhu S, Smart RC. Diminished expression of C/EBPα in skin carcinomas is linked to oncogenic Ras and reexpression of C/EBPα in carcinoma cells inhibits proliferation. Cancer Res. 2005;65(3):861–7.PubMedGoogle Scholar
  41. 41.
    Al Hawas R, Ren Q, Ye S, Karim ZA, Filipovich AH, Whiteheart SW. Munc18b/STXBP2 is required for platelet secretion. Blood. 2012;120(12):2493–500. doi: 10.1182/blood-2012-05-430629.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. Peer J. 2013;1:e201. doi: 10.7717/peerj.201.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang L, LF W, Lu X, Mo XB, Tang ZX, Lei SF, et al. Integrated analyses of gene expression profiles digs out common markers for rheumatic diseases. PLoS One. 2015;10(9):e0137522. doi: 10.1371/journal.pone.0137522.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Grote P, Herrmann BG. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 2013;10(10):1579–85. doi: 10.4161/rna.26165.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749. doi: 10.7554/eLife.01749.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li L, Feng T, Lian Y, Zhang G, Garen A, Song X. Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci. 2009;106(31):12956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, et al. ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368. doi: 10.1371/journal.pgen.1003368.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Watts R, Ghozlan M, Hughey CC, Johnsen VL, Shearer J, Hittel DS. Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochem Cell Biol. 2014;92(3):226–34. doi: 10.1139/bcb-2014-0004.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang X, Li M, Wang Z, Han S, Tang X, Ge Y, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem. 2015;290(7):3925–35. doi: 10.1074/jbc.M114.596866.CrossRefPubMedGoogle Scholar
  52. 52.
    Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y, et al. Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol. 2011;179(4):2120–30. doi: 10.1016/j.ajpath.2011.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    De Cecco L, Negri T, Brich S, Mauro V, Bozzi F, Dagrada G, et al. Identification of a gene expression driven progression pathway in myxoid liposarcoma. Oncotarget. 2014;5(15):5965–77. doi: 10.18632/oncotarget.2023.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Astorga J, Carlsson P. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development. 2007;134(20):3753–61. doi: 10.1242/dev.004432.CrossRefPubMedGoogle Scholar
  55. 55.
    Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143–56. doi: 10.1161/CIRCRESAHA.116.305510.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhu Y, Zhang X, Qi L, Cai Y, Yang P, Xuan G, et al. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas. Oncotarget. 2016;7(12):14429–40. doi: 10.18632/oncotarget.7418.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Guo X, Yang Z, Zhi Q, Wang D, Guo L, Li G, et al. Long noncoding RNA OR3A4 promotes metastasis and tumorigenicity in gastric cancer. Oncotarget. 2016. doi: 10.18632/oncotarget.7217.Google Scholar
  58. 58.
    WM F, YF L, BG H, Liang WC, Zhu X, Yang HD, et al. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget. 2016;7(4):4712–23. doi: 10.18632/oncotarget.6731.Google Scholar
  59. 59.
    Schultz B, Yao X, Deng Y, Waner M, Spock C, Tom L, et al. A common polymorphism within the IGF2 imprinting control region is associated with parent of origin specific effects in infantile hemangiomas. PLoS One. 2015;10(10):e0113168. doi: 10.1371/journal.pone.0113168.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Seo S, Singh HP, Lacal PM, Sasman A, Fatima A, Liu T, et al. Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth. Proc Natl Acad Sci. 2012;109(6):2015–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Amin DN, Bielenberg DR, Lifshits E, Heymach JV, Klagsbrun M, Targeting EGFR. Activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR-2 dependence in tumor endothelial cells. Microvasc Res. 2008;76(1):15–22.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Xiaowen Liu
    • 1
  • Renrong Lv
    • 1
  • Linfeng Zhang
    • 1
  • Guangqi Xu
    • 1
  • Jianhai Bi
    • 1
  • Feng Gao
    • 1
  • Jian Zhang
    • 1
  • Feng Xue
    • 1
  • Fagang Wang
    • 1
  • Yiliang Wu
    • 1
  • Cong Fu
    • 1
  • Qiang Wang
    • 2
  • Ran Huo
    • 1
  1. 1.Department of Burn & Plastic SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
  2. 2.Department of Burn and Plastic SurgeryTengzhou Central People’s HospitalTengzhouChina

Personalised recommendations