Tumor Biology

, Volume 37, Issue 12, pp 16077–16091 | Cite as

Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation

Original Article


Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide range of cellular responses. However, the exact mechanism whereby Smurf2 controls TGF-β-induced signaling pathways remains unknown. Here, we identified the relationship between the alternate TGF-β signaling pathways: TGF-β/PI3K/Akt/β-catenin and TGF-β/Smad2/3/FoxO1/PUMA and Smurf2. The results showed that TGF-β promoted proliferation, invasion, and migration of human pancreatic carcinoma (PANC-1) cells through the PI3K/Akt/β-catenin pathway. Inhibiting the PI3K/Akt signal transformed the TGF-β-induced cell response from promoting proliferation to Smad2/3/FoxO1/PUMA-mediated apoptosis. The activation of Akt inhibited the phosphorylation/activation of Smad3 and promoted the phosphorylation/inactivation of FoxO1, inhibiting the nuclear translocation of both Smad3 and FoxO1 and inhibiting the expression of PUMA, a key apoptotic mediator. However, downregulation of Smurf2 in PANC-1 cells removed Akt-mediated suppression of Smad3 and FoxO1, allowing TGF-β-induced phosphorylation/activation of Smad2/3, dephosphorylation/activation of FoxO1, nuclear translocation of both factors, and activation of PUMA-mediated apoptosis. Downregulation of Smurf2 also decreased invasion and migration in TGF-β-induced PANC-1 cells. The in vivo experiments also revealed that downregulation of Smurf2 delayed the growth of xenograft tumors originating from PANC-1 cells especially when treated with TGF-β. Taken together, these results indicate that expression of Smurf2 plays a central role in the determination and activation/inhibition of particular cellular pathways and the ultimate fate of cells induced by TGF-β. An increased understanding of the intricacies of the TGF-β signaling pathway may provide a new anti-cancer therapeutic target.


Transforming growth factor β Migration Invasion Pancreatic carcinoma Smad ubiquitin regulatory factor 2 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.CrossRefPubMedGoogle Scholar
  3. 3.
    Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 1998;12:2445–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627–44.PubMedGoogle Scholar
  5. 5.
    Bean GR, Ganesan YT, Dong Y, et al. PUMA and BIM are required for oncogene inactivation-induced apoptosis. Sci Signal. 2013;6:ra20.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wiener Z, Band AM, Kallio P, et al. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-beta. Proc Natl Acad Sci U S A. 2014;111:E2229–36.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GHASMAD. Ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999;400:687–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem. 2000;275:36818–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A. 2001;98:974–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fukuchi M, Fukai Y, Masuda N, et al. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 2002;62:7162–5.PubMedGoogle Scholar
  12. 12.
    Loukopoulos P, Shibata T, Katoh H, et al. Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci. 2007;98:392–400.CrossRefPubMedGoogle Scholar
  13. 13.
    Fukasawa H, Yamamoto T, Fujigaki Y, et al. Reduction of transforming growth factor-beta type II receptor is caused by the enhanced ubiquitin-dependent degradation in human renal cell carcinoma. Int J Cancer. 2010;127:1517–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Tan R, He W, Lin X, Kiss LP, Liu Y. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. Am J Physiol Renal Physiol. 2008;294:F1076–83.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan R, Zhang J, Tan X, Zhang X, Yang J, Liu Y. Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation. J Am Soc Nephrol. 2006;17:2781–91.CrossRefPubMedGoogle Scholar
  16. 16.
    David D, Jagadeeshan S, Hariharan R, Nair AS, Pillai RM. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div. 2014;9:2.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Blank M, Tang Y, Yamashita M, Burkett SS, Cheng SY, Zhang YE. A Tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat Med. 2012;18:227–34.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lo RS, Massague J. Ubiquitin-dependent degradation of TGF-β activated smad2. Nat Cell Biol. 1999;1:472–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massague J. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol Cell. 2009;36:457–68.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    David D, Nair SA, Pillai MR. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. Biochim Biophys Acta. 2013;1835:119–28.PubMedGoogle Scholar
  21. 21.
    Li H, Seth A. An RNF11: Smurf2 complex mediates ubiquitination of the AMSH protein. Oncogene. 2004;23:1801–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Schwamborn JC, Muller M, Becker AH, Puschel AW. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 2007;26:1410–22.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tang LY, Yamashita M, Coussens NP, et al. Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. EMBO J. 2011;30:4777–89.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H. The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J Cell Biol. 2008;183(2):267–77.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moore FE, Osmundson EC, Koblinski J, Pugacheva E, Golemis EA, Ray D, Kiyokawa H. The WW-HECT protein Smurf2 interacts with the docking protein NEDD9/HEF1 for aurora a activation. Cell Div. 2010;5:22.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dadke D, Jarnik M, Pugacheva EN, Singh MK, Golemis EA. Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol Biol Cell. 2006;17(3):1204–17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xie P, Tang Y, Shen S, Wang Y, Xing G, Yin Y, He F, Zhang L. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Biochem Biophys Res Commun. 2011;407(1):254–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Du JX, Hagos EG, Nandan MO, Bialkowska AB, Yu B, Yang VW. The E3 ubiquitin ligase SMAD ubiquitination regulatory factor 2 negatively regulates Krüppel-like factor 5 protein. J Biol Chem. 2011;286(46):40354–64.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang C. Roles of E3 ubiquitin ligases in cell adhesion and migration. Cell Adhes Migr. 2010;4(1):10–8.CrossRefGoogle Scholar
  30. 30.
    Jin C, Yang YA, Anver MR, Morris N, Wang X, Zhang YE. Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 2009;69(3):735–40.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nie J, Xie P, Liu L, Xing G, Chang Z, Yin Y, Tian C, He F, Zhang L. Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2. J Biol Chem. 2010;285(30):22818–30.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L. HECT Ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett. 2010;584(14):3005–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang H, Teng Y, Kong Y, Kowalski PE, Cohen SN. Suppression of human tumor cell proliferation by Smurf2-induced senescence. J Cell Physiol. 2008;215:613–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Scheffner M, Staub O. HECT E3s and human disease. BMC Biochem. 2007;8(Suppl 1):S6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lakshmanan M, Bughani U, Duraisamy S, Diwan M, Dastidar S, Ray A. Molecular targeting of E3 ligases—a therapeutic approach for cancer. Expert Opin Ther Targets. 2008;12(7):855–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 2006;8(8):645–54.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  2. 2.Institution of Interventional and Vascular SurgeryTongji UniverityShanghaiChina

Personalised recommendations