Tumor Biology

, Volume 37, Issue 12, pp 15903–15912 | Cite as

A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase

Original Article
  • 132 Downloads

Abstract

Inhibition of tumor vasculature is an effective strategy for cancer therapy. Angiostatin could suppress tumor growth and metastasis by binding and inhibiting F1F0 ATP synthase on the endothelial cell surface. We previously screened a monoclonal antibody (McAb, McAb178-5G10), which specifically bound to ATPase on the surface of cells and showed an angiostatin-like activity. Here, we further generated a panel of CHO-mAb subclone stable expressing a humanized chimeric antibody from hybridoma cell McAb178-5G10 by gene engineer. And then, we successfully expressed the humanized antibody Hai178 at high level in a 5-L wave bioreactor. The vitro results showed that Hai178 retained the specific binding and antitumor activity of murine antibody. Furthermore, Hai178 also had a tumor therapeutic effect in tumor xenografts. These results paved the way for Hai178 as a therapeutic antibody in clinic.

Keywords

F1F0 ATP synthase Humanized chimeric antibody Stable cell line Tumor therapy 

Notes

Acknowledgments

This work was supported by Major Scientific and Technological Special Project for “Significant New Drugs Creation” No. 2012ZX09103301-040.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Burwick NR. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem. 2004;280:1740–5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ma Z, Cao M, Liu Y, He Y, Wang Y, Yang C, et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta. Biochim Biophys. 2010;42:530–7.Google Scholar
  3. 3.
    Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol. 2006;17:279–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Moser L, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yuan J, Zhang C, Fang S, Zhuang Z, Ling S, Wang SA. Monoclonal antibody against F1-F0 atp synthase beta subunit. Hybridoma. 2012;31:352–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res. 2015;5:1558–70.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang X, Gao F, LL Y, Peng Y, Liu HH, Liu JY, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin. 2008;29:942–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor recognition following vgamma 9vdelta2 t cell receptor interactions with a surface F1-atpase-related structure and apolipoprotein a-i. Immunity. 2005;22:71–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Deshpande M, Notari L, Subramanian P, Notario V, Becerra SP. Inhibition of tumor cell surface atp synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219–27.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular ph: a mechanism dependent on cell surface-associated atp synthase. Cancer Res. 2006;66:875–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, et al. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res. 2007;67:4716–24.CrossRefPubMedGoogle Scholar
  12. 12.
    Moser TL, Stack SM, Asplin I, Enghild JJ, Højrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96:2811–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mowery YM, Pizzo SV. Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther. 2008;7:1836–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem. 2015;290:6338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med. 2011;(9):211.Google Scholar
  16. 16.
    Wang J, Han Y, Liang J, Cheng X, Yan L, Wang Y, et al. Effect of a novel inhibitory mAb against β-subunit of F1F0 ATPase on HCC. Cancer Biol Ther. 2008;7:1829–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, et al. A monoclonal antibody (Mc178-ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med. 2012;12:3–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem. 2013;114:1695–703.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao WL, Wang J, Tao YF, Feng X, Li YH, Zhu XM, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:31–92.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res. 2009;15:1585–92.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NCA. Study of monoclonal antibody-producing cho cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng. 2008;99:578–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Tabuchi H, Sugiyama T, Tanaka S, Tainaka S. Overexpression of taurine transporter in chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng. 2010;107:998–1003.CrossRefPubMedGoogle Scholar
  24. 24.
    Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding egfr single-chain fv antibody fragment for the targeted cancer therapy. J Control Release. 2015;209:101–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, et al. Vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol. 2006;57:709–18.CrossRefPubMedGoogle Scholar
  27. 27.
    De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/her3 signalling. Gut. 2013;62:550–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of dapit (diabetes-associated protein in insulin-sensitive tissue) results in loss of atp synthase in mitochondria. J Biol Chem. 2011;286:20292–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J. Cell Sci. J Cell Sci. 2010;123:2685–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Calvo B, Zuñiga L. Therapeutic monoclonal antibodies: strategies and challenges for biosimilarsdevelopment. Curr Med Chem. 2012;2012:4445–50.CrossRefGoogle Scholar
  32. 32.
    Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Chen Chen
    • 1
  • Hui Liang
    • 2
  • Xinmei Liao
    • 2
  • Jian Pan
    • 3
  • Jianhe Chen
    • 2
  • Shibi Zhao
    • 2
  • Yan Xu
    • 2
  • Yun Wu
    • 2
  • Jian Ni
    • 1
    • 2
  1. 1.Translational Research Center, Second Hospital, The Second Clinical SchoolNanjing Medical UniversityNanjingChina
  2. 2.Human Antibodomics Suzhou Industrial ParkSuzhouChina
  3. 3.Department of Hematology and OncologyChildren’s Hospital of Soochow UniversitySuzhouChina

Personalised recommendations