Tumor Biology

, Volume 37, Issue 12, pp 15643–15648 | Cite as

Norcantharidin induces autophagy-related prostate cancer cell death through Beclin-1 upregulation by miR-129-5p suppression

Original Article

Abstract

Norcantharidin (NCTD) has an anticancer potential to allow it to be used in the treatment of some malignant cancers. However, whether NCTD may have similar anticancer effects on prostate cancer (PC) is unknown. Here, we aimed to examine the effects of NCTD on PC cells and the underlying mechanisms. We found that NCTD dose-dependently inhibited the PC cell growth, in either a cell counting kit-8 (CCK-8) assay or a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, NCTD dose-dependently increased the PC cell autophagy, through upregulation of Beclin-1. Furthermore, the Beclin-1 protein, but not mRNA, was regulated by NCTD in PC cells, suggesting post-transcriptional control of Beclin-1 by NCTD. Finally, microRNA (miR)-129-5p was found to be regulated by NCTD, and bioinformatics analyses showed that miR-129-5p targeted the 3′-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that NCTD may upregulate Beclin-1 through suppression of miR-129-5p to induce autophagic cell death and cell proliferation arrest in PC cells. Our study sheds light on using NCTD as a novel treatment for PC.

Keywords

Prostate cancer (PC) Norcantharidin (NCTD) Beclin-1 miR-129-5p Autophagy 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A. 2011;108:1850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Villar J, Quadri HS, Song I, Tomita Y, Tirado OM, Notario V. PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase calpha-mediated Bcl-2 stabilization. Cancer Res. 2009;69:102–10.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–61.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kok SH, Hong CY, Kuo MY, Lee CH, Lee JJ, Lou IU, et al. Comparisons of norcantharidin cytotoxic effects on oral cancer cells and normal buccal keratinocytes. Oral Oncol. 2003;39:19–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang X, Gu Z, Li G, Zhang S, Cao Z, Yang Z, et al. Norcantharidin enhances ABT-263-mediated anticancer activity in neuroblastoma cells by upregulation of noxa. Oncol Rep. 2014;32:716–22.PubMedGoogle Scholar
  6. 6.
    Shou LM, Zhang QY, Li W, Xie X, Chen K, Lian L, et al. Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent downregulation of alpha2 integrin. Oncol Rep. 2013;30:1059–66.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee YC, Lee LM, Yang CH, Lin AM, Huang YC, Hsu CC, et al. Norcantharidin suppresses cell growth and migration with enhanced anticancer activity of gefitinib and cisplatin in human non-small cell lung cancer cells. Oncol Rep. 2013;29:237–43.PubMedGoogle Scholar
  8. 8.
    Xie X, Wu MY, Shou LM, Chen LP, Gong FR, Chen K, et al. Tamoxifen enhances the anticancer effect of cantharidin and norcantharidin in pancreatic cancer cell lines through inhibition of the protein kinase c signaling pathway. Oncology letters. 2015;9:837–44.PubMedGoogle Scholar
  9. 9.
    Xie J, Zhang Y, Hu X, Lv R, Xiao D, Jiang L, et al. Norcantharidin inhibits wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer. Med Oncol. 2015;32:145.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen YJ, Tsai YM, Kuo CD, Ku KL, Shie HS, Liao HF. Norcantharidin is a small-molecule synthetic compound with anti-angiogenesis effect. Life Sci. 2009;85:642–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu W, Sun W, Zhang JT, Liu ZY, Li XP, Fan YZ. Norcantharidin enhances TIMP2 antivasculogenic mimicry activity for human gallbladder cancers through downregulating MMP2 and MT1MMP. Int J Oncol. 2015;46:627–40.PubMedGoogle Scholar
  12. 12.
    Zhang JT, Fan YZ, Chen CQ, Zhao ZM, Sun W. Norcantharidin: a potential antiangiogenic agent for gallbladder cancers in vitro and in vivo. Int J Oncol. 2012;40:1501–14.PubMedGoogle Scholar
  13. 13.
    Zhang S, Li G, Ma X, Wang Y, Liu G, Feng L, et al. Norcantharidin enhances ABT-737-induced apoptosis in hepatocellular carcinoma cells by transcriptional repression of MCL-1. Cell Signal. 2012;24:1803–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang JT, Sun W, Zhang WZ, Ge CY, Liu ZY, Zhao ZM, et al. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPS/Ln-5gamma2 signaling pathway. BMC Cancer. 2014;14:193.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li XP, Jing W, Sun JJ, Liu ZY, Zhang JT, Sun W, et al. A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 “multi-points priming” mechanisms in vitro and in vivo. BMC Cancer. 2015;15:527.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157:65–75.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155:1216–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Huang CY, Huang SP, Lin VC, Yu CC, Chang TY, Lu TL, et al. Genetic variants of the autophagy pathway as prognostic indicators for prostate cancer. Sci Rep. 2015;5:14045.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014;11:508–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, et al. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol. 2013;27:280–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Ouyang DY, Xu LH, He XH, Zhang YT, Zeng LH, Cai JY, et al. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy. 2013;9:20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lian J, Karnak D, Xu L. The Bcl-2-Beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy. 2010;6:1201–3.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lamoureux F, Zoubeidi A. Dual inhibition of autophagy and the Akt pathway in prostate cancer. Autophagy. 2013;9:1119–20.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem. 2015;35:926–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Sun R, Luo Y, Li J, Wang Q, Li J, Chen X, et al. Ammonium chloride inhibits autophagy of hepatocellular carcinoma cells through SMAD2 signaling. Tumour Biol. 2015;36:1173–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chang Y, Zhao Y, Gu W, Cao Y, Wang S, Pang J, et al. Bufalin inhibits the differentiation and proliferation of cancer stem cells derived from primary osteosarcoma cells through miR-148a. Cell Physiol Biochem. 2015;36:1186–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Song W, Li Q, Wang L, Wang L. Modulation of FOXO1 expression by miR-21 to promote growth of pancreatic ductal adenocarcinoma. Cell Physiol Biochem. 2015;35:184–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Jin Y, Lu J, Wen J, Shen Y, Wen X. Regulation of growth of human bladder cancer by miR-192. Tumour Biol. 2015;36:3791–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Q, Cai J, Wang J, Xiong C, Zhao J. miR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu G, Jiang C, Li D, Wang R, Wang W. miRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. miRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Huang SQ, Liao QJ, Wang XW, Xin DQ, Chen SX, Wu QJ, et al. RNAi-mediated knockdown of pituitary tumor- transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells. Braz J Med Biol Res. 2012;45:995–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013;41:W159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brest P, Lassalle S, Hofman V, Bordone O, Gavric Tanga V, Bonnetaud C, et al. miR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr Relat Cancer. 2011;18:711–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Duan L, Hao X, Liu Z, Zhang Y, Zhang G. miR-129-5p is down-regulated and involved in the growth, apoptosis and migration of medullary thyroid carcinoma cells through targeting RET. FEBS Lett. 2014;588:1644–51.CrossRefPubMedGoogle Scholar
  39. 39.
    Li M, Tian L, Wang L, Yao H, Zhang J, Lu J, et al. Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One. 2013;8, e77829.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dossing KB, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, et al. Down-regulation of miR-129-5p and the let-7 family in neuroendocrine tumors and metastases leads to up-regulation of their targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel). 2014;6:1–21.Google Scholar
  41. 41.
    Long XH, Zhou YF, Peng AF, Zhang ZH, Chen XY, Chen WZ, et al. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP). Tumour Biol. 2015;36:3799–806.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations