Tumor Biology

, Volume 36, Issue 11, pp 8259–8266 | Cite as

Perioperative propofol-paravertebral anesthesia decreases the metastasis and progression of breast cancer

  • Xiu Chen
  • Peng Lu
  • Lin Chen
  • Su-jin Yang
  • Hong-Yu Shen
  • Dan-dan Yu
  • Xiao-hui Zhang
  • Shan-liang Zhong
  • Jian-hua Zhao
  • Jin-hai Tang
Review

Abstract

Propofol-paravertebral anesthesia (PPA) is a unique combination of paravertebral nerve blocks (PVBs) and propofol that regulates the cellular microenvironment during surgical period. Growing evidence points to its ability to attenuate perioperative immunosuppression of cancers. Abundant studies show that cancer patients who undergo perioperative PPA exhibit less recurrence as well as metastasis. Breast cancer remains a leading cause of cancer-induced death in women. Over the last decades, increasing concerns have been put on the promotional role of PPA in the prognosis of breast cancer patients. Among them, PPA participates in several bioprocesses in the development of breast cancer, including inhibiting hypoxia-inducible factor (HIF) activity, elevating serum concentration of nitric oxide index (NOx), depression of the neuroepithelial cell transforming gene 1 (NET1) signal pathway, blocking the nuclear factor kappa B (NF-κB) pathway following an decreased expression of matrix metalloproteinase (MMP), increasing NK cytotoxicity, and affecting transforming growth factor (TGF)-β-targeted ras and HER2/neu gene pathways. In this review, we discuss the effect of PPA on breast cancer metastasis and progression. This will provide an alteration pattern of surgical anesthesia technique in breast cancer patients with poor prognosis.

Keywords

Propofol Paravertebral anesthesia Breast cancer Prognosis 

Abbreviations

PPA

Propofol-paravertebral anesthesia

HIF-1α

Hypoxia-inducible factor-1α

NOS

Nitric oxide synthase

CPSP

Chronic postsurgical pain

ACh

Acetylcholine

NET1

Neuroepithelial Cell Transforming Gene 1

RHOA

Ras homolog gene family member A

IKK

Inhibitor of nuclear factor kappa B kinase

MMPs

Matrix metalloproteinases

VEGF

Vascular endothelial growth factor

EMT

Epithelial to mesenchymal transition

IFN

Interferon

SIX1

Sine oculis homeobox homolog 1

TGF

Transforming growth factor

MAPK

Mitogen-activated protein kinase

PI3K

Phosphatidylinositol 3-kinase

Notes

Acknowledgments

This work has no fund. We thank Shan-Liang Zhong, M.D. for his discussion and help in the revision.

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Eschwege P, Dumas F, Blanchet P, Le Maire V, Benoit G, Jardin A, et al. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet. 1995;346(8989):1528–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, et al. Increased surgical stress promotes tumor metastasis. Surgery. 2003;133(5):547–55. doi: 10.1067/msy.2003.141.CrossRefPubMedGoogle Scholar
  4. 4.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1(2):149–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Richardson J, Lonnqvist PA, Naja Z. Bilateral thoracic paravertebral block: potential and practice. Br J Anaesth. 2011;106(2):164–71. doi: 10.1093/bja/aeq378.CrossRefPubMedGoogle Scholar
  6. 6.
    Snyder GL, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth. 2010;105(2):106–15. doi: 10.1093/bja/aeq164.CrossRefPubMedGoogle Scholar
  7. 7.
    Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L. The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci. 2014;119(3):251–61. doi: 10.3109/03009734.2014.922649.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Deegan CA, Murray D, Doran P, Moriarty DC, Sessler DI, Mascha E, et al. Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med. 2010;35(6):490–5. doi: 10.1097/AAP.0b013e3181ef4d05.CrossRefPubMedGoogle Scholar
  9. 9.
    Desmond FMJ, Mulligan N, Stokes M, Buggy D. Effect of anaesthetic technique on immune cell infiltration in breast cancer a follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer Res. 2015;35:1311–20.PubMedGoogle Scholar
  10. 10.
    Chiu M, Bryson GL, Lui A, Watters JM, Taljaard M, Nathan HJ. Reducing persistent postoperative pain and disability 1 year after breast cancer surgery: a randomized, controlled trial comparing thoracic paravertebral block to local anesthetic infiltration. Ann Surg Oncol. 2014;21(3):795–801. doi: 10.1245/s10434-013-3334-6.CrossRefPubMedGoogle Scholar
  11. 11.
    Iohom G, Abdalla H, O’Brien J, Szarvas S, Larney V, Buckley E, et al. The associations between severity of early postoperative pain, chronic postsurgical pain and plasma concentration of stable nitric oxide products after breast surgery. Anesth Analg. 2006;103(4):995–1000. doi: 10.1213/01.ANE.0000240415.49180.4A.CrossRefPubMedGoogle Scholar
  12. 12.
    Kairaluoma PM, Bachmann MS, Rosenberg PH, Pere PJ. Preincisional paravertebral block reduces the prevalence of chronic pain after breast surgery. Anesth Analg. 2006;103(3):703–8. doi: 10.1213/01.ane.0000230603.92574.4e.CrossRefPubMedGoogle Scholar
  13. 13.
    Ecimovic P, Murray D, Doran P, Buggy DJ. Propofol and bupivacaine in breast cancer cell function in vitro—role of the NET1 gene. Anticancer Res. 2014;34(3):1321–31.PubMedGoogle Scholar
  14. 14.
    Li Q, Zhang L, Han Y, Jiang Z, Wang Q. Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother. 2012;66(1):52–6. doi: 10.1016/j.biopha.2011.10.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckley A, McQuaid S, Johnson P, Buggy DJ. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. Br J Anaesth. 2014;113 Suppl 1:i56–62. doi: 10.1093/bja/aeu200.CrossRefPubMedGoogle Scholar
  16. 16.
    Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009;115(3):453–95. doi: 10.1007/s10549-008-0184-1.CrossRefPubMedGoogle Scholar
  17. 17.
    Takabuchi S, Hirota K, Nishi K, Oda S, Oda T, Shingu K, et al. The intravenous anesthetic propofol inhibits hypoxia-inducible factor 1 activity in an oxygen tension-dependent manner. FEBS letters. 2004;577(3):434–8. doi: 10.1016/j.febslet.2004.10.042.CrossRefPubMedGoogle Scholar
  18. 18.
    Yeh CH, Cho W, So EC, Chu CC, Lin MC, Wang JJ, et al. Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1alpha expression. Br J Anaesth. 2011;106(4):590–9. doi: 10.1093/bja/aer005.CrossRefPubMedGoogle Scholar
  19. 19.
    He XY, Shi XY, Yuan HB, Xu HT, Li YK, Zou Z. Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1alpha. Injury. 2012;43(3):279–83. doi: 10.1016/j.injury.2011.05.037.CrossRefPubMedGoogle Scholar
  20. 20.
    Mashmoushi AK, Oates JC. Lipopolysaccharide induces inducible nitric oxide synthase-dependent podocyte dysfunction via a hypoxia-inducible factor 1alpha and cell division control protein 42 and Ras-related C3 botulinum toxin substrate 1 pathway. Free Radic Biol Med. 2015;84:185–95. doi: 10.1016/j.freeradbiomed.2015.02.031.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kafousi M, Vrekoussis T, Tsentelierou E, Pavlakis K, Navrozoglou I, Dousias V, et al. Immunohistochemical study of the angiogenetic network of VEGF, HIF1alpha, VEGFR-2 and endothelial nitric oxide synthase (eNOS) in human breast cancer. Pathol Oncol Res. 2012;18(1):33–41. doi: 10.1007/s12253-011-9413-8.CrossRefPubMedGoogle Scholar
  22. 22.
    Toriyabe M, Omote K, Kawamata T, Namiki A. Contribution of interaction between nitric oxide and cyclooxygenases to the production of prostaglandins in carrageenan-induced inflammation. Anesthesiology. 2004;101(4):983–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Y, Boettger MK, Reif A, Schmitt A, Uceyler N, Sommer C. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol Pain. 2010;6:13. doi: 10.1186/1744-8069-6-13.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Freire MA, Guimaraes JS, Leal WG, Pereira A. Pain modulation by nitric oxide in the spinal cord. Front Neurosci. 2009;3(2):175–81. doi: 10.3389/neuro.01.024.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One. 2009;4(10):e7596. doi: 10.1371/journal.pone.0007596.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fan W, Huang F, Wu Z, Zhu X, Li D, He H. The role of nitric oxide in orofacial pain. Nitric Oxide. 2012;26(1):32–7. doi: 10.1016/j.niox.2011.11.003.CrossRefPubMedGoogle Scholar
  27. 27.
    Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988;336(6197):385–8. doi: 10.1038/336385a0.CrossRefPubMedGoogle Scholar
  28. 28.
    Paragomi P, Rahimian R, Kazemi MH, Gharedaghi MH, Khalifeh-Soltani A, Azary S, et al. Antinociceptive and antidiarrheal effects of pioglitazone in a rat model of diarrhoea-predominant irritable bowel syndrome: role of nitric oxide. Clin Exp Pharmacol Physiol. 2014;41(2):118–26. doi: 10.1111/1440-1681.12188.CrossRefPubMedGoogle Scholar
  29. 29.
    Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993;52(2):127–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25(3):243–54. doi: 10.1016/j.niox.2011.06.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Moncada S, Palmer RM, Higgs EA. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988;12(4):365–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol. 2010;80(6):838–45. doi: 10.1016/j.bcp.2010.05.002.CrossRefPubMedGoogle Scholar
  34. 34.
    Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, et al. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(1):98–106.CrossRefPubMedGoogle Scholar
  35. 35.
    Shin JI, Lim HY, Kim HW, Seung BJ, Sur JH. Analysis of hypoxia-inducible factor-1alpha expression relative to other key factors in malignant canine mammary tumours. J Comp Pathol. 2015;153(2–3):101–10. doi: 10.1016/j.jcpa.2015.05.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Gilcrease MZ, Kilpatrick SK, Woodward WA, Zhou X, Nicolas MM, Corley LJ, et al. Coexpression of alpha6beta4 integrin and guanine nucleotide exchange factor Net1 identifies node-positive breast cancer patients at high risk for distant metastasis. Cancer Epidemiol Biomarkers Prev. 2009;18(1):80–6. doi: 10.1158/1055-9965.epi-08-0842.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cho SG, Li D, Stafford LJ, Luo J, Rodriguez-Villanueva M, Wang Y, et al. KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem. 2009;107(6):1139–49. doi: 10.1002/jcb.22216.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sero JE, Sailem HZ, Ardy RC, Almuttaqi H, Zhang T, Bakal C. Cell shape and the microenvironment regulate nuclear translocation of NF-kappaB in breast epithelial and tumor cells. Mol Syst Biol. 2015;11(1):790. doi: 10.15252/msb.20145644.CrossRefPubMedGoogle Scholar
  39. 39.
    Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27. doi: 10.1111/j.1742-4658.2010.07919.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Radisky DC, Bissell MJ. Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev. 2006;16(1):45–50. doi: 10.1016/j.gde.2005.12.011.CrossRefPubMedGoogle Scholar
  41. 41.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. doi: 10.1038/nrm3434.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD. Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest. 2002;109(11):1437–44. doi: 10.1172/jci15051.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 2001;61(2):577–81.PubMedGoogle Scholar
  45. 45.
    Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell. 2008;13(3):193–205. doi: 10.1016/j.ccr.2007.11.032.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hess AR, Seftor EA, Seftor RE, Hendrix MJ. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63(16):4757–62.PubMedGoogle Scholar
  47. 47.
    Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol. 2012;181(4):1115–25. doi: 10.1016/j.ajpath.2012.07.013.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192–8. doi: 10.1038/84643.CrossRefPubMedGoogle Scholar
  49. 49.
    Mehner C, Radisky DC. Triggering the landslide: The tumor-promotional effects of myofibroblasts. Exp Cell Res. 2013;319(11):1657–62. doi: 10.1016/j.yexcr.2013.03.015.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Del Casar JM, Gonzalez LO, Alvarez E, Junquera S, Marin L, Gonzalez L, et al. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res Treat. 2009;116(1):39–52. doi: 10.1007/s10549-009-0351-z.CrossRefPubMedGoogle Scholar
  51. 51.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27. doi: 10.1038/nm1764.CrossRefPubMedGoogle Scholar
  52. 52.
    Gulubova M, Manolova I, Kyurkchiev D, Julianov A, Altunkova I. Decrease in intrahepatic CD56+ lymphocytes in gastric and colorectal cancer patients with liver metastases. APMIS. 2009;117(12):870–9. doi: 10.1111/j.1600-0463.2009.02547.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Marechal R, De Schutter J, Nagy N, Demetter P, Lemmers A, Deviere J, et al. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer. 2010;10:340. doi: 10.1186/1471-2407-10-340.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Menon AG, Janssen-van Rhijn CM, Morreau H, Putter H, Tollenaar RA, van de Velde CJ, et al. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004;84(4):493–501. doi: 10.1038/labinvest.3700055.CrossRefPubMedGoogle Scholar
  55. 55.
    Sandel MH, Speetjens FM, Menon AG, Albertsson PA, Basse PH, Hokland M, et al. Natural killer cells infiltrating colorectal cancer and MHC class I expression. Mol Immunol. 2005;42(4):541–6. doi: 10.1016/j.molimm.2004.07.039.CrossRefPubMedGoogle Scholar
  56. 56.
    Halama N, Braun M, Kahlert C, Spille A, Quack C, Rahbari N, et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res. 2011;17(4):678–89. doi: 10.1158/1078-0432.ccr-10-2173.CrossRefPubMedGoogle Scholar
  57. 57.
    McLean MH, Murray GI, Stewart KN, Norrie G, Mayer C, Hold GL, et al. The inflammatory microenvironment in colorectal neoplasia. PLoS One. 2011;6(1):e15366. doi: 10.1371/journal.pone.0015366.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lausson S, Fournes B, Borrel C, Milhaud G, Treilhou-Lahille F. Immune response against medullary thyroid carcinoma (MTC) induced by parental and/or interleukin-2-secreting MTC cells in a rat model of human familial medullary thyroid carcinoma. Cancer Immunol Immunother. 1996;43(2):116–23.CrossRefPubMedGoogle Scholar
  59. 59.
    Shanker A, Verdeil G, Buferne M, Inderberg-Suso EM, Puthier D, Joly F, et al. CD8 T cell help for innate antitumor immunity. J Immunol. 2007;179(10):6651–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Gebremeskel S, Clattenburg DR, Slauenwhite D, Lobert L, Johnston B. Natural killer T cell activation overcomes immunosuppression to enhance clearance of postsurgical breast cancer metastasis in mice. Oncoimmunology. 2015;4(3):e995562. doi: 10.1080/2162402x.2014.995562.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Looney M, Doran P, Buggy DJ. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor beta in women undergoing anesthesia and surgery for breast cancer. Anesthesiology. 2010;113(5):1118–25. doi: 10.1097/ALN.0b013e3181f79a69.CrossRefPubMedGoogle Scholar
  62. 62.
    Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31(50):5162–71. doi: 10.1038/onc.2012.11.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL. Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene. 2012;31(5):552–62. doi: 10.1038/onc.2011.259.PubMedGoogle Scholar
  64. 64.
    Zarzynska J, Motyl T. Dissimilar effects of LY 294002 and PD 098059 in IGF-I-mediated inhibition of TGF-beta1 expression and apoptosis in bovine mammary epithelial cells. J Physiol Pharmacol. 2005;56 Suppl 3:181–93.PubMedGoogle Scholar
  65. 65.
    Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627–44.PubMedGoogle Scholar
  66. 66.
    Welch DR, Fabra A, Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci U S A. 1990;87(19):7678–82.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518–24. doi: 10.1038/nature03799.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL, et al. Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer. 2001;91(1):76–82.CrossRefPubMedGoogle Scholar
  69. 69.
    Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103(2):197–206. doi: 10.1172/jci3523.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hiraga T, Myoui A, Choi ME, Yoshikawa H, Yoneda T. Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer. Cancer Res. 2006;66(4):2067–73. doi: 10.1158/0008-5472.can-05-2012.CrossRefPubMedGoogle Scholar
  71. 71.
    Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102(39):13909–14. doi: 10.1073/pnas.0506517102.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, et al. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006;66(4):2202–9. doi: 10.1158/0008-5472.can-05-3560.CrossRefPubMedGoogle Scholar
  73. 73.
    Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, et al. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem. 2002;277(27):24571–8. doi: 10.1074/jbc.M202561200.CrossRefPubMedGoogle Scholar
  74. 74.
    Tian F, DaCosta BS, Parks WT, Yoo S, Felici A, Tang B, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res. 2003;63(23):8284–92.PubMedGoogle Scholar
  75. 75.
    Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone metastases. Cancer. 2003;97(3 Suppl):779–84. doi: 10.1002/cncr.11129.CrossRefPubMedGoogle Scholar
  76. 76.
    Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer. 2005;5 Suppl(2):S46–53.CrossRefGoogle Scholar
  77. 77.
    Lee SD, Lee DS, Chun YG, Paik SH, Kim WS, Kim DS, et al. Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther. 2000;13(6):257–65. doi: 10.1006/pupt.2000.0252.CrossRefPubMedGoogle Scholar
  78. 78.
    Trompezinski S, Pernet I, Mayoux C, Schmitt D, Viac J. Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol. 2000;143(3):539–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Dunn LK, Mohammad KS, Fournier PG, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896. doi: 10.1371/journal.pone.0006896.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002;156(2):299–313. doi: 10.1083/jcb.200109037.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 1998;8(23):1243–52.CrossRefPubMedGoogle Scholar
  82. 82.
    Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol. 2003;23(23):8691–703.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiu Chen
    • 1
    • 4
  • Peng Lu
    • 2
  • Lin Chen
    • 3
  • Su-jin Yang
    • 1
    • 4
  • Hong-Yu Shen
    • 1
    • 4
  • Dan-dan Yu
    • 4
  • Xiao-hui Zhang
    • 5
  • Shan-liang Zhong
    • 5
  • Jian-hua Zhao
    • 5
  • Jin-hai Tang
    • 4
  1. 1.The Fourth Clinical School of Nanjing Medical UniversityNanjingChina
  2. 2.School of Public Healthy Nanjing Medical UniversityNanjingChina
  3. 3.Department of OncologyXuzhou Medical CollegeXuzhouChina
  4. 4.Department of General SurgeryJiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjingChina
  5. 5.Center of Clinical Laboratory ScienceJiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjingChina

Personalised recommendations