Skip to main content

Advertisement

Log in

S100A4 participates in epithelial-mesenchymal transition in breast cancer via targeting MMP2

  • Research Article
  • Published:
Tumor Biology

Abstract

Numerous studies have shown that S100A4 acquires its metastasis-promoting effects via inducing epithelial-mesenchymal transition (EMT). However, its role and mechanism in EMT in breast cancer had not been clearly elucidated. Herein, we showed that the knockdown of S100A4 expression in breast cancer cell lines, MDA-MB-231 and MDA-MB-468, inhibited not only cell invasion ability greatly, but also the occurrence of EMT significantly. In addition, S100A4 knockdown could also decrease the expression of MMP2, a promoter and a mediator of the EMT processes in cancer. Above all, restoring the expression of MMP2 in MDA-MB-231 and MDA-MB-468 could not only rescue the invasion ability inhibited by knockdown of S100A4, but also reverse the EMT suppressed by knockdown of S100A4. In summary, our results indicated that S100A4 could promote the invasion ability of breast cancer cells via EMT, more importantly, it could participate in EMT via regulating MMP2 in breast cancer. Therefore, S100A4 could be a candidate biomarker for defining breast cancer metastasis and useful target for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stanley P. L. Leong, Zhen-Zhou Shen, Tse-Jia Liu, Gaurav Agarwal, Tomoo Tajima, Nam-Sun Paik, Kerstin Sandelin, Anna Derossis, Hiram Cody, William D. Foulkes. Is breast cancer the same disease in Asian and Western countries? World J Surg. 2010; 34(10): 2308–2324

  2. Yvonne L. Michael, Nichole E. Carlson, Rowan T. Chlebowski, Mikel Aickin, Karen L. Weihs, Judith K. Ockene, Deborah J. Bowen, Cheryl Ritenbaugh. Influence of stressors on breast cancer incidence in the Women’s Health Initiative. Health Psychol. 2009; 28(2): 137–146.

  3. Lv ZD, Kong B, Liu XP, Dong Q, Niu HT, Wang YH, et al. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(10):6671–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong M, Hong SE. Predictive factors for supraclavicular lymph node recurrence in N1 breast cancer patients. Asian Pac J Cancer Prev. 2013;14(4):2509–14.

    Article  PubMed  Google Scholar 

  5. Rosa Mendoza ES, Moreno E, Caguioa PB. Predictors of early distant metastasis in women with breast cancer. J Cancer Res Clin Oncol. 2013;139(4):645–52.

    Article  PubMed  Google Scholar 

  6. Bill R, Christofori G. The relevance of EMT in breast cancer metastasis: correlation or causality? FEBS Lett. 2015;589(14):1577–87.

    Article  CAS  PubMed  Google Scholar 

  7. Konrad S, Stefan E, Andres Jan S, Julie S. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med. 2014;3:17.

    Article  Google Scholar 

  8. Sarah H, Genevieve H, Meghan L, Mckenna L, Shannon B, Karolina L, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.

    Article  Google Scholar 

  9. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonzalez DM, Damian M. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Natarajan J, Hunter K, Mutalik VS, Radhakrishnan R. Overexpression of S100A4 as a biomarker of metastasis and recurrence in oral squamous cell carcinoma. J Appl Oral Sci. 2014;22(5):426–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rasanen K, Sriswasdi S, Valiga A, Tang HY, Zhang G, Perego M, et al. Comparative secretome analysis of epithelial and mesenchymal subpopulations of head and neck squamous cell carcinoma identifies S100A4 as a potential therapeutic target. Mol Cell Proteomics. 2013;12(12):3778–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martínez-Aguilar J, Clifton-Bligh R, Molloy MP. A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer. 2015;29(15):199.

    Article  CAS  Google Scholar 

  14. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xuan X, Li Q, Zhang Z, Du Y, Liu P. Increased expression levels of S100A4 associated with hypoxia-induced invasion and metastasis in esophageal squamous cell cancer. Tumour Biol. 2014;35(12):12535–43.

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Bresnick AR, O'Connor KL. Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene. 2013;32(32):3754–64.

    Article  CAS  PubMed  Google Scholar 

  17. Takenaga K, Nakanishi H, Wada K, Suzuki M, Matsuzaki O, Matsuura A, et al. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas. Clin Cancer Res. 1997;3(12 Pt 1):2309–16.

    CAS  PubMed  Google Scholar 

  18. Wang H, Shi J, Luo Y, Liao Q, Niu Y, Zhang F, et al. LIM and SH3 protein 1 induces TGF-β-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin Cancer Res. 2014;20(22):5835–47.

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Su B, Xie C, Wei S, Zhou Y, Liu H, et al. Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One. 2014;9(7):e96441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue C, Plieth D, Venkov C, Xu C, Neilson EG. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63:3386–94.

    CAS  PubMed  Google Scholar 

  21. Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Informat. 2015;14 Suppl 3:1–13.

    Google Scholar 

  22. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3-4):335–44.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol. 2003;162(6):1937–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chantravekin Y, Koontongkaew S. Effects of ameloblastoma-associated fibroblasts on the proliferation and invasion of tumor cells. J Cancer Res Ther. 2014;10(4):1082–7.

    Article  PubMed  Google Scholar 

  25. Zhu H, Zhou X, Ma C, Chang H, Li H, Liu F, et al. Low expression of miR-448 Induces EMT and promotes invasion by regulating ROCK2 in hepatocellular carcinoma. Cell Physiol Biochem. 2015;36(2):487–98.

    Article  CAS  PubMed  Google Scholar 

  26. Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H, et al. USP22 promotes tumor progression and induces epithelial-mesenchymal transition in lung adenocarcinoma. Lung Cancer. 2015;88(3):239–45.

    Article  PubMed  Google Scholar 

  27. Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol BioSyst. 2014;10(4):838–50.

    Article  CAS  PubMed  Google Scholar 

  28. Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA. Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation. Am J Pathol. 2014;184(7):2001–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008;25(6):593–600.

    Article  CAS  PubMed  Google Scholar 

  30. Yang XC, Wang X, Luo L, Dong DH, Yu QC, Wang XS, et al. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway. Eur Rev Med Pharmacol Sci. 2013;17(12):1669–80.

    PubMed  Google Scholar 

  31. Zhang HY, Zheng XZ, Wang XH, Xuan XY, Wang F, Li SS. S100A4 mediated cell invasion and metastasis of esophageal squamous cell carcinoma via the regulation of MMP-2 and E-cadherin activity. Mol Biol Rep. 2012;39(1):199–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxia Fan.

Additional information

Han Xu and Mengquan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Li, M., Zhou, Y. et al. S100A4 participates in epithelial-mesenchymal transition in breast cancer via targeting MMP2. Tumor Biol. 37, 2925–2932 (2016). https://doi.org/10.1007/s13277-015-3709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3709-3

Keywords

Navigation