Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8797–8803 | Cite as

Imbalance in systemic inflammation and immune response following transarterial chemoembolization potentially increases metastatic risk in huge hepatocellular carcinoma

  • Tong-Chun Xue
  • Qing-An Jia
  • Ning-Ling Ge
  • Yi Chen
  • Bo-Heng Zhang
  • Sheng-Long Ye
Research Article

Abstract

Inflammation plays a critical role in tumor metastasis. However, few inflammation-related biomarkers are currently available to predict the risk of metastasis for advanced hepatocellular carcinoma (HCC). Using huge tumors (diameter >10 cm) as a model, we evaluated the potential risk of pre- and post-treatment inflammatory responses in the development of metastasis of HCC patients undergoing transarterial chemoembolization (TACE). A logistic regression model was used to analyze the risk factors. One hundred and sixty-five patients with huge HCC were enrolled in the study. Metastases were identified in 25.5 % (42/165) patients by imaging evaluation post-TACE. Neutrophils increased, whereas lymphocytes decreased significantly post-TACE. Univariate analysis showed that high post-treatment neutrophil-to-lymphocyte ratio (NLR; p = 0.003), low post-treatment lymphocyte count (p = 0.047), and high baseline NLR (p = 0.100) were potential risk factors for metastasis. Further, multivariate analysis showed that high post-treatment NLR, but not pre-treatment NLR, was an independent risk factor for metastasis; this was confirmed by receiver operating characteristic curve analysis. Post-treatment NLR, however, had no correlation to tumor response and overall survival of patients. In conclusion, post-treatment NLR but not pre-treatment NLR independently increases the risk of metastasis in huge HCC. Our findings suggest the potential contribution of treatment-related inflammation to metastasis in advanced HCC.

Keywords

Chemoembolization Hepatocellular carcinoma Immune Inflammation Metastasis 

Notes

Acknowledgments

This study was supported by the State Key Project on Infectious Diseases of China (No. 2012ZX10002-016) and the Shanghai Natural Science Foundation (No. 15ZR1407100).

Conflicts of interest

None.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Lencioni R. Chemoembolization in patients with hepatocellular carcinoma. Liver Cancer. 2012;1:41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang Z, Wu XL, Zeng WZ, Xu GS, Xu H, Weng M, et al. Meta-analysis of the efficacy of sorafenib for hepatocellular carcinoma. Asian Pac J Cancer Prev. 2013;14:691–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang W, Sun HC, Wang WQ, Zhang QB, Zhuang PY, Xiong YQ, et al. Sorafenib down-regulates expression of HTATIP2 to promote invasiveness and metastasis of orthotopic hepatocellular carcinoma tumors in mice. Gastroenterology. 2012;143:1641–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhu XD, Sun HC, Xu HX, Kong LQ, Chai ZT, Lu L, et al. Antiangiogenic therapy promoted metastasis of hepatocellular carcinoma by suppressing host-derived interleukin-12b in mouse models. Angiogenesis. 2013;16:809–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, Zheng C, Liang B, Zhao H, Qian J, Liang H, et al. Hepatocellular necrosis, apoptosis, and proliferation after transcatheter arterial embolization or chemoembolization in a standardized rabbit model. J Vasc Interv Radiol. 2011;22:1606–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193:1044–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju124.CrossRefPubMedGoogle Scholar
  11. 11.
    Xue TC, Zhang L, Xie XY, Ge NL, Li LX, Zhang BH, et al. Prognostic significance of the neutrophil-to-lymphocyte ratio in primary liver cancer: a meta-analysis. PLoS One. 2014;9:e96072.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lencioni R. New data supporting modified RECIST (mRECIST) for hepatocellular carcinoma. Clin Cancer Res. 2013;19:1312–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, et al. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130:187–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang QB, Sun HC, Zhang KZ, Jia QA, Bu Y, Wang M, et al. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS One. 2013;8:e55945.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bonfil RD, Bustuoabad OD, Ruggiero RA, Meiss RP, Pasqualini CD. Tumor necrosis can facilitate the appearance of metastases. Clin Exp Metastasis. 1988;6:121–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Liou TC, Shih SC, Kao CR, Chou SY, Lin SC, Wang HY. Pulmonary metastasis of hepatocellular carcinoma associated with transarterial chemoembolization. J Hepatol. 1995;23:563–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxidative Med Cell Longev. 2013;2013:387014.CrossRefGoogle Scholar
  20. 20.
    Freire J, Ajona D, de Biurrun G, Agorreta J, Segura V, Guruceaga E, et al. Silica-induced chronic inflammation promotes lung carcinogenesis in the context of an immunosuppressive microenvironment. Neoplasia. 2013;15:913–24.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fehlker M, Huska MR, Jons T, Andrade-Navarro MA, Kemmner W. Concerted down-regulation of immune-system related genes predicts metastasis in colorectal carcinoma. BMC Cancer. 2014;14:64.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qin LX. Inflammatory immune responses in tumor microenvironment and metastasis of hepatocellular carcinoma. Cancer Microenviron. 2012;5:203–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brudvik KW, Henjum K, Aandahl EM, Bjornbeth BA, Tasken K. Regulatory t-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunol Immunother. 2012;61:1045–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Llovet JM, Paradis V, Kudo M, Zucman-Rossi J. Tissue biomarkers as predictors of outcome and selection of transplant candidates with hepatocellular carcinoma. Liver Transpl. 2011;17 Suppl 2:S67–71.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori M. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 2010;45:146–52.CrossRefPubMedGoogle Scholar
  26. 26.
    de Souza CM, de Carvalho LF, da Silva Vieira T, Candida Araujo ESA, Paz Lopes MT, Alves Neves Diniz Ferreira M, et al. Thalidomide attenuates mammary cancer associated-inflammation, angiogenesis and tumor growth in mice. Biomed Pharmacother. 2012;66:491–8.CrossRefGoogle Scholar
  27. 27.
    Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, et al. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol. 2012;40:1298–304.PubMedGoogle Scholar
  28. 28.
    Sahasrabuddhe VV, Gunja MZ, Graubard BI, Trabert B, Schwartz LM, Park Y, et al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J Natl Cancer Inst. 2012;104:1808–14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shen B, Chu ES, Zhao G, Man K, Wu CW, Cheng JT, et al. PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer. 2012;106:1486–94.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26:190–206.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Tong-Chun Xue
    • 1
    • 2
  • Qing-An Jia
    • 3
  • Ning-Ling Ge
    • 1
    • 2
  • Yi Chen
    • 1
    • 2
  • Bo-Heng Zhang
    • 1
    • 2
    • 4
  • Sheng-Long Ye
    • 1
    • 2
  1. 1.Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationFudan UniversityShanghaiChina
  3. 3.Institutes of Biomedical SciencesFudan UniversityShanghaiChina
  4. 4.Department of Medical Statistics, Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations