Tumor Biology

, Volume 36, Issue 11, pp 8715–8725 | Cite as

Macrophages of M1 phenotype have properties that influence lung cancer cell progression

  • Alexander Hedbrant
  • Jonny Wijkander
  • Tomas Seidal
  • Dick Delbro
  • Ann Erlandsson
Research Article


Stromal macrophages of different phenotypes can contribute to the expression of proteins that affects metastasis such as urokinase-type plasminogen activator (uPA), its receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), but knowledge of how essential their contribution is in comparison to the cancer cells in small cell lung cancer (SCLC) and lung squamous cell carcinoma (SCC) is lacking. The expression of uPA, uPAR, and PAI-1 and of the matrix metalloproteinases (MMP)-2 and MMP-9 were studied in human macrophages of M1 and M2 phenotype and compared to a lung SCC (NCI-H520) and a SCLC (NCI-H69) cell line. Effects of treatment with conditioned media (CM) from M1 and M2 macrophages on the expression of these genes in H520 and H69 cells as well as effects on the cell growth were investigated. In addition, data on the stromal macrophages immunoreactivity of uPAR, MMP-2, and MMP-9 in a few SCC and SCLC biopsies was included. uPAR, MMP-2, and MMP-9 were confirmed in stromal cells including macrophages in the SCC and SCLC biopsies. In vitro, both macrophage phenotypes expressed considerably higher mRNA levels of uPA, uPAR, PAI-1, and MMP-9 compared to the cancer cell lines, and regarding uPAR, the highest level was found in the M1 macrophage phenotype. Furthermore, M1 CM treatment not only induced an upregulation of PAI-1 in both H520 and H69 cells but also inhibited cell growth in both cell lines, giving M1 macrophages both tumor-promoting and tumor-killing potential.


M1 macrophages M2 macrophages MMP Lung cancer uPA uPAR 



The present study was supported financially by the County Council of Värmland. Örebro University is gratefully acknowledged for financial support to D.D.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    International Agency for Research on Cancer. World Cancer Report 2014. World Health Organization; 2014.Google Scholar
  2. 2.
    Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2014.Google Scholar
  3. 3.
    Selvaggi G, Scagliotti GV. Histologic subtype in NSCLC: does it matter? Oncology (Williston Park). 2009;23(13):1133–40.Google Scholar
  4. 4.
    Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24(9):2371–6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang Y, Wang S, Xu S, Qu J, Liu B. Clinicopathologic features of patients with non-small cell lung cancer harboring the EML4-ALK fusion gene: a meta-analysis. PLoS One. 2014;9(10):e110617.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001;31(2–3):139–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Isajevs S, Taivans I, Svirina D, Strazda G, Kopeika U. Patterns of inflammatory responses in large and small airways in smokers with and without chronic obstructive pulmonary disease. Respiration. 2011;81(5):362–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang S-R, Chida AS, Bauter MR, Shafiq N, Seweryniak K, Maggirwar SB et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages. vol 1. 2006.Google Scholar
  9. 9.
    Turato G, Di Stefano A, Maestrelli P, Mapp CE, Ruggieri MP, Roggeri A, et al. Effect of smoking cessation on airway inflammation in chronic bronchitis. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1262–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Kunz LI, Lapperre TS, Snoeck-Stroband JB, Budulac SE, Timens W, van Wijngaarden S, et al. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD. Respir Res. 2011;12:34.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–91.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 2013;35(5):585–600.CrossRefPubMedGoogle Scholar
  16. 16.
    Ojalvo LS, King W, Cox D, Pollard JW. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009;174(3):1048–64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Medrek C, Ponten F, Jirstrom K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T, et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol. 2010;5(10):1507–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang B, Yao G, Zhang Y, Gao J, Yang B, Rao Z. M2-Polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics (Sao Paulo). 2011;66(11):1879–86.CrossRefGoogle Scholar
  20. 20.
    Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P. Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J. 2009;33(1):118–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma J, Liu L, Che G, Yu N, Dai F, You Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010;10:112.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004;16(5):558–64.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta. 2012;1825(1):29–36.PubMedGoogle Scholar
  25. 25.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Carpagnano GE, Palladino GP, Martinelli D, Lacedonia D, Orlando S, Foschino-Barbaro MP. Exhaled matrix metalloproteinase-9 in lung cancer. Rejuvenation Res. 2012;15(4):359–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Tang C, Luo D, Yang H, Wang Q, Zhang R, Liu G, et al. Expression of SHP2 and related markers in non-small cell lung cancer: a tissue microarray study of 80 cases. Appl Immunohistochem Mol Morphol. 2013;21(5):386–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375–536.CrossRefPubMedGoogle Scholar
  29. 29.
    Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000;57(1):25–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev. 2014;34(5):918–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Li Y, Shen Y, Miao Y, Luan Y, Sun B, Qiu X. Co-expression of uPAR and CXCR4 promotes tumor growth and metastasis in small cell lung cancer. Int J Clin Exp Pathol. 2014;7(7):3771–80.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Illemann M, Laerum OD, Hasselby JP, Thurison T, Hoyer-Hansen G, Nielsen HJ, et al. Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer. Cancer Med. 2014;3(4):855–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jacobsen B, Ploug M. The urokinase receptor and its structural homologue C4.4A in human cancer: expression, prognosis and pharmacological inhibition. Curr Med Chem. 2008;15(25):2559–73.CrossRefPubMedGoogle Scholar
  34. 34.
    Fay WP, Parker AC, Condrey LR, Shapiro AD. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997;90(1):204–8.PubMedGoogle Scholar
  35. 35.
    Harbeck N, Schmitt M, Meisner C, Friedel C, Untch M, Schmidt M, et al. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer. 2013;49(8):1825–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Werle B, Kotzsch M, Lah TT, Kos J, Gabrijelcic-Geiger D, Spiess E, et al. Cathepsin B, plasminogenactivator-inhibitor (PAI-1) and plasminogenactivator-receptor (uPAR) are prognostic factors for patients with non-small cell lung cancer. Anticancer Res. 2004;24(6):4147–61.PubMedGoogle Scholar
  37. 37.
    Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest. 1997;100(1):58–67.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Engstrom A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385–92.PubMedGoogle Scholar
  39. 39.
    Pedersen H, Brunner N, Francis D, Osterlind K, Ronne E, Hansen HH, et al. Prognostic impact of urokinase, urokinase receptor, and type 1 plasminogen activator inhibitor in squamous and large cell lung cancer tissue. Cancer Res. 1994;54(17):4671–5.PubMedGoogle Scholar
  40. 40.
    Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih C-C, et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS One. 2007;2(2):e243.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu G, Shuman MA, Cohen RL. Co-expression of urokinase, urokinase receptor and PAI-1 is necessary for optimum invasiveness of cultured lung cancer cells. Int J Cancer. 1995;60(4):501–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Pyke C, Kristensen P, Ralfkiaer E, Grondahl-Hansen J, Eriksen J, Blasi F, et al. Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol. 1991;138(5):1059–67.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Robert C, Bolon I, Gazzeri S, Veyrenc S, Brambilla C, Brambilla E. Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clin Cancer Res. 1999;5(8):2094–102.PubMedGoogle Scholar
  44. 44.
    Chen WL, Sheu JR, Hsiao CJ, Hsiao SH, Chung CL, Hsiao G. Histone deacetylase inhibitor impairs plasminogen activator inhibitor-1 expression via inhibiting TNF-alpha-activated MAPK/AP-1 signaling cascade. Biomed Res Int. 2014;2014:231012.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Iniesta P, Moran A, De Juan C, Gomez A, Hernando F, Garcia-Aranda C, et al. Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep. 2007;17(1):217–23.PubMedGoogle Scholar
  46. 46.
    Wang J, Cai Y. Matrix metalloproteinase 2 polymorphisms and expression in lung cancer: a meta-analysis. Tumour Biol. 2012;33(6):1819–28.CrossRefPubMedGoogle Scholar
  47. 47.
    Peng WJ, Zhang JQ, Wang BX, Pan HF, Lu MM, Wang J. Prognostic value of matrix metalloproteinase 9 expression in patients with non-small cell lung cancer. Clin chim Acta Int J Clin Chem. 2012;413(13–14):1121–6.CrossRefGoogle Scholar
  48. 48.
    Ishikawa S, Takenaka K, Yanagihara K, Miyahara R, Kawano Y, Otake Y, et al. Matrix metalloproteinase-2 status in stromal fibroblasts, not in tumor cells, is a significant prognostic factor in non-small-cell lung cancer. Clin Cancer Res. 2004;10(19):6579–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee CY, Shim HS, Lee S, Lee JG, Kim DJ, Chung KY. Prognostic effect of matrix metalloproteinase-9 in patients with resected Non small cell lung cancer. J Cardiothorac Surg. 2015;10(1):44.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hahn N, Heiden M, Seitz R, Salge-Bartels U. Inducible expression of tissue factor in small-cell lung cancer: impact on morphology and matrix metalloproteinase secretion. J Cancer Res Clin Oncol. 2012;138(4):695–703.CrossRefPubMedGoogle Scholar
  51. 51.
    Shabo I, Svanvik J. Expression of macrophage antigens by tumor cells. Adv Exp Med Biol. 2011;714:141–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal. 2013;18(17):2352–63.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Alexander Hedbrant
    • 1
  • Jonny Wijkander
    • 1
  • Tomas Seidal
    • 1
  • Dick Delbro
    • 2
  • Ann Erlandsson
    • 1
  1. 1.Department of Health SciencesKarlstad UniversityKarlstadSweden
  2. 2.School of Health and Medical ScienceÖrebro UniversityÖrebroSweden

Personalised recommendations