Skip to main content

Advertisement

Log in

Identification of sequence polymorphisms in the mitochondrial displacement loop as risk factors for sporadic and familial breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers, and the association of these SNPs with cancer risk and disease outcome has been exhaustively studied. We sequenced a region of approximately 1 kb flanking the majority of the D-Loop in the DNA from the blood of breast cancer patients and the controls to identify cancer risk-associated D-loop SNPs. The D-loop region of mtDNA was sequenced from 92 sporadic breast cancer patients, 60 familial breast cancer patients and 41 relatives, and 93 healthy controls. Paired and unpaired Student’s t tests were used as appropriate to determine the differences in SNP distribution within the D-loop region and in the number of SNPs per patient among the groups. The χ 2 test was used to analyze dichotomous values, such as the presence or absence of an individual SNP among each group, and the clinical characteristics between every two groups. The distribution frequencies of 315C/Cinsert, 524C/del, 16247A/del, 16248C/del, 16249T/C, 16257C/A, 16258A/del, 16259C/del, 16262C/del, 16268C/del, 16279C/del, 16280A/del, 16297T/C, and 16300A/del were significantly different between sporadic breast cancer patients and the normal controls. The SNP sites at nucleotides 310, 315, and 16362 were identified as cancer risk-associated SNPs specific for familial breast cancer. The N haplogroup, defined as 489T, was identified as a specific risk-associated SNP for families of breast cancer patients by comparing familial breast cancer patients with their relatives. The analysis of genetic polymorphisms in the D-loop may help to predict cancer risk for familial breast cancer and thereby help to detect and refine therapeutic decisions earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer incidence and mortality worldwide. IARC Cancer Base No. 10 [Internet]. Lyon (France). IARC 2010, Available from: http://globocan.iarc.fr.

  2. Ozmen V. Breast cancer in the World and Turkey. Journal of Breast Health. 2008;4(2):2–5.

    Google Scholar 

  3. Kelsey JL, Whittemore AS. Epidemiology and primary prevention of cancers of the breast, endometrium, and ovary: a brief overview. Ann Epidemiol. 1994;4(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  4. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22.

    Article  CAS  PubMed  Google Scholar 

  5. Collins A, Politopoulos I. The genetics of breast cancer: risk factors for disease. Appl Clin Genet. 2011;4:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van der Hout AH, Van den Ouweland AM, Van der Luijt RB, Gille HJ. A DGGE system for comprehensive mutation screening of BRCA1 and BRCA2: application in a Dutch cancer clinic setting. Hum Mutat. 2006;27:654–66.

    Article  PubMed  Google Scholar 

  7. Malone KE, Daling JR, Thompson JD. BRCA1 mutations and breast cancer in the general population: analyses in women before age 35 years and in women before age 45 years with first-degree family history. JAMA. 1998;279:922–9.

    Article  CAS  PubMed  Google Scholar 

  8. Peto J, Mack TM. High constant incidence in twins and other relatives of women with breast cancer. Nat Genet. 2000;26(4):411–4.

    Article  CAS  PubMed  Google Scholar 

  9. Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res. 2013;119:107–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loft S, Olsen A, Møller P, Poulsen HE, Tjønneland A. Association between 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion and risk of postmenopausal breast cancer: nested case–control study. Cancer Epidemiol Biomarkers Prev. 2013;22(7):1289–96.

    Article  CAS  PubMed  Google Scholar 

  11. Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3:420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25:4647–62.

    Article  CAS  PubMed  Google Scholar 

  13. Fliss MS, Usadel H, Caballero OL. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287:2017–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tan DJ, Bai RK, Wong LJ. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res. 2002;62:972–6.

    CAS  PubMed  Google Scholar 

  15. Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis. 2005;26:145–52.

    Article  PubMed  Google Scholar 

  16. Tavassoli FA, Devilee P. WHO Pathology & Genetics tumours of the breast and female genital organ[M]. Lyon: IARS; 2002. p. 10.

    Google Scholar 

  17. Sauter G, Lee J, Bartlett JM. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27(8):1323–33.

    Article  CAS  PubMed  Google Scholar 

  18. Lakhani SR, Reis-Filho JS, Fulford L. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11(14):5175–80.

    Article  CAS  PubMed  Google Scholar 

  19. Navaglia F, Basso D, Fogar P, Sperti C, Greco E, Zambon CF, et al. Mitochondrial DNA D-loop in pancreatic cancer: somatic mutations are epiphenomena while the germline 16519 T variant worsens metabolism and outcome. Am J Clin Pathol. 2006;126:593–601.

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Bamlet WR, De Andrade M, Boardman LA, Cunningham JM, Thibodeau SN, et al. Mitochondrial genetic polymorphisms and pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev. 2007;16:1455–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, McDonnell SK, Hebbring SJ, Cunningham JM, St Sauver J, Cerhan JR, et al. Polymorphisms in mitochondrial genes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17:3558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Mitochondrial displacement loop alterations are associated with endometriosis. Fertil Steril. 2013;99:1980–6. e1989.

    Article  CAS  PubMed  Google Scholar 

  23. Chen JB, Yang YH, Lee WC, Liou CW, Lin TH, Chung YH, et al. Sequence-based polymorphisms in the mitochondrial D-loop and potential SNP predictors for chronic dialysis. PLoS One. 2012;7:e41125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mueller EE, Eder W, Ebner S, Schwaiger E, Santic D, Kreindl T, et al. The mitochondrial T16189C polymorphism is associated with coronary artery disease in middle European populations. PLoS One. 2011;6:e16455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Cespedes M, Parrella P, Nomoto S, Cohen D, Xiao Y, Esteller M, et al. Identification of a mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res. 2001;61:7015–9.

    CAS  PubMed  Google Scholar 

  26. Xu B, Clayton DA. A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol. 1995;15:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee DY, Clayton DA. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem. 1998;46:30614–21.

    Article  Google Scholar 

  28. He ZF, Li JS, Tao C. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer. 2010;10:421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN. Mitochondrial DNA G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 2007;249(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  30. Stoneking M. Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet. 2000;67:1029–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quintero JM, Borjas L, Pardo T. Haplotype diversity in mitochondrial DNA hypervariable regions I and II in Maracaibo population (Venezuela). Forensic Sci Int: Genet Suppl Ser. 2009;2:334–5.

    Google Scholar 

  32. Zhang R, Wang R, Zhang F. Single nucleotide polymorphisms in the mitochondrial displacement loop and outcome of esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2010;29:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao Y, Zhao G, Diao L, Guo Z. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for non-Hodgkin lymphoma. Mitochondrial DNA. 2013;0(0):1-3.

  34. Ding C, Li R, Wang P, Jin P, Li S, Guo Z. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for lung cancer. Mitochondrial DNA. 2012;23(4):251–4.

    Article  CAS  PubMed  Google Scholar 

  35. Guo Z, Yang H, Wang C, Liu S. Mitochondrial DNA haplogroup M is associated with late onset of hepatocellular carcinoma. Exp Ther Med. 2012;3(3):499–502.

    CAS  PubMed  Google Scholar 

  36. Dement GA, Maloney SC, Reeves R. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function. Exp Cell Res. 2007;313(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  37. Sapkota Y, Mackey JR, Lai R, Franco-Villalobos C, Lupichuk S, Robson AJ, et al. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility. PLoS One. 2013;8:e64896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen JB, Chuang LY, Lin YD, Liou CW, Lin TK, Lee WC, et al. Preventive snp-snp interactions in the mitochondrial displacement loop (d-loop) from chronic dialysis patients. Mitochondrion. 2013;13:698–704.

    Article  CAS  PubMed  Google Scholar 

  39. Wu SJ, Chuang LY, Lin YD, Ho WH, Chiang FT, Yang CH, et al. Particle swarm optimization algorithm for analyzing snp-snp interaction of renin-angiotensin system genes against hypertension. Mol Biol Rep. 2013;40:4227–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Hebei Science and Technology Research and Development Program no. 12276101D.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuizhi Geng.

Additional information

Meng Cheng and Zhanjun Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M., Guo, Z., Li, H. et al. Identification of sequence polymorphisms in the mitochondrial displacement loop as risk factors for sporadic and familial breast cancer. Tumor Biol. 35, 4773–4777 (2014). https://doi.org/10.1007/s13277-014-1626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1626-5

Keywords

Navigation