Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: A meta-analysis

  • Research Article
  • Published:
Tumor Biology

This article was retracted on 20 April 2017

Abstract

Previous studies proposed that CYP1A2 rs762551 polymorphism might be associated with risk of lung cancer by influencing the function of CYP1A2. However, previous studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer reported inconsistent findings. We performed a meta-analysis of the published case–control studies to assess the association between CYP1A2 rs762551 polymorphism and risk of lung cancer. PubMed and Embase were searched to identify relevant studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer, and seven studies with a total of 3,320 subjects were finally included into the meta-analysis. The pooled odds ratio (OR) and 95 % confidence interval (95%CI) was calculated to evaluate the association. Meta-analysis of total studies showed that CYP1A2 rs762551 polymorphism contributed to risk of lung cancer under all four genetic models (C versus A: OR = 1.26, 95%CI 1.13 to 1.40, P < 0.001; CC versus AA: OR = 1.61, 95%CI 1.28 to 2.04, P < 0.001; CC versus AA/AC: OR = 1.52, 95%CI 1.11 to 2.09, P = 0.009; CC/AC versus AA: OR = 1.28, 95%CI 1.10 to 1.48, P = 0.001). Subgroup analysis based on ethnicity further suggested that CYP1A2 rs762551 polymorphism was associated with risk of lung cancer in Caucasians. These results from the meta-analysis suggest that CYP1A2 rs762551 polymorphism contributes to risk of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378:1727–40.

    Article  PubMed  Google Scholar 

  3. Marshall AL, Christiani DC. Genetic susceptibility to lung cancer–light at the end of the tunnel? Carcinogenesis. 2013;34:487–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.

    Article  CAS  PubMed  Google Scholar 

  5. Oyama T, Uramoto H, Kagawa N, Yoshimatsu T, Osaki T, Nakanishi R, et al. Cytochrome p450 in non-small cell lung cancer related to exogenous chemical metabolism. Front Biosci (Schol Ed). 2012;4:1539–46.

    Article  Google Scholar 

  6. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 2007;3:617–27.

    Article  CAS  PubMed  Google Scholar 

  7. Tan XL, Spivack SD. Dietary chemoprevention strategies for induction of phase ii xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer. 2009;65:129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nebert DW, Dalton TP. The role of cytochrome p450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–60.

    Article  CAS  PubMed  Google Scholar 

  9. Nishikawa A, Mori Y, Lee IS, Tanaka T, Hirose M. Cigarette smoking, metabolic activation and carcinogenesis. Curr Drug Metab. 2004;5:363–73.

    Article  CAS  PubMed  Google Scholar 

  10. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the cyp1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279:23847–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bozina N, Bradamante V, Lovric M. Genetic polymorphism of metabolic enzymes p450 (cyp) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol. 2009;60:217–42.

    Article  CAS  PubMed  Google Scholar 

  12. Gemignani F, Landi S, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, et al. Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis. 2007;28:1287–93.

    Article  CAS  PubMed  Google Scholar 

  13. Osawa Y, Osawa KK, Miyaishi A, Higuchi M, Tsutou A, Matsumura S, et al. Nat2 and cyp1a2 polymorphisms and lung cancer risk in relation to smoking status. Asian Pac J Cancer Prev. 2007;8:103–8.

    PubMed  Google Scholar 

  14. B'Chir F, Pavanello S, Knani J, Boughattas S, Arnaud MJ, Saguem S. Cyp1a2 genetic polymorphisms and adenocarcinoma lung cancer risk in the Tunisian population. Life Sci. 2009;84:779–84.

    Article  PubMed  Google Scholar 

  15. Singh AP, Pant MC, Ruwali M, Shah PP, Prasad R, Mathur N, et al. Polymorphism in cytochrome p450 1a2 and their interaction with risk factors in determining risk of squamous cell lung carcinoma in men. Cancer Biomark. 2010;8:351–9.

    Article  CAS  PubMed  Google Scholar 

  16. Gervasini G, Ghotbi R, Aklillu E, San Jose C, Cabanillas A, Kishikawa J, et al. Haplotypes in the 5'-untranslated region of the cyp1a2 gene are inversely associated with lung cancer risk but do not correlate with caffeine metabolism. Environ Mol Mutagen. 2013;54:124–32.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  19. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  20. Aldrich MC, Selvin S, Hansen HM, Barcellos LF, Wrensch MR, Sison JD, et al. Cyp1a1/2 haplotypes and lung cancer and assessment of confounding by population stratification. Cancer Res. 2009;69:2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavanello S, Fedeli U, Mastrangelo G, Rota F, Overvad K, Raaschou-Nielsen O, et al. Role of cyp1a2 polymorphisms on lung cancer risk in a prospective study. Cancer Genet. 2012;205:278–84.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Chen ZX, Rewuti A, Ma YS, Wang XF, Xia Q, et al. Quantitative assessment of the influence of cytochrome P450 1A2 gene polymorphism and colorectal cancer risk. PLoS One. 2013;8:e71481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian Z, Li YL, Zhao L, Zhang CL. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 case–control studies. Gene. 2013;524:168–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ma.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

An erratum to this article can be found online at http://dx.doi.org/10.1007/s13277-017-5487-6.

About this article

Cite this article

Ma, Z., Guo, W., Gong, T. et al. RETRACTED ARTICLE: CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: A meta-analysis. Tumor Biol. 35, 2253–2257 (2014). https://doi.org/10.1007/s13277-013-1298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1298-6

Keywords

Navigation