Gum arabic-encapsulated gold nanoparticles modulate hypoxamiRs expression in tongue squamous cell carcinoma

Abstract

Background

Oral tongue squamous cell carcinoma (OTSCC) is a popular aggressive malignancy of the oral cavity. Despite advances in OTSCC therapy, the overall 5-year survival rate is low. The tumor microenvironment resistance factors lead to chemotherapy failure, especially intratumoral hypoxia. HIF-1α, the main protein in hypoxia pathway, influences cell survival and angiogenesis. Hypoxia/HIF-1α system is a potential strategic target in cancer therapeutics. The expression of hypoxia-regulating miRNAs (hypoxamiRs; miR-210 and miR-21), regulators of HIF-1α, is high in OTSCC. Gum Arabic-encapsulated gold nanoparticles (GA-AuNPs) have been reported as promising modality in cancer treatment.

Objective

This study aimed to investigate the influence of GA-AuNPs on the hypoxia regulators in OTSCC (CAL-127 cells). GA-AuNPs cytotoxicity assessed by MTT assay; cell death mode was detected by dual DNA staining; monitoring of cellular hypoxia was followed by pimonidazole; miR-210 and miR-21 expression was assessed by qPCR; and their targets (HIF-1α and c-Myc) assayed by immunocytofluorescence and ELISA, respectively.

Results

GA-AuNPs (75–80 nm; λmax of ~ 540 nm) reduced cell viability with IC50 of 392.3 and 247.3 µg/ml after 24 h and 48 h, respectively. Cell death was mainly due to apoptosis. CAL-27 cells exhibited high hypoxia and the treatment with GA-AuNPs inhibited this hypoxia in a dose-dependent manner, as detected by pimonidazole. GA-AuNPs (30% IC50) significantly reduced miR-210 and miR-21 expression. HIF-1α and c-Myc were inhibited by GA-AuNPs (30% IC50, for 48 h).

Conclusion

The study findings may suggest GA-AuNPs as a promising carrier for chemotherapies to diminish intratumoral hypoxia-stimulated resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V et al (2001) Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916

    CAS  PubMed  Google Scholar 

  2. Almangush A, Heikkinen I, Mäkitie AA, Coletta RD, Läärä E, Leivo I, Salo T (2017) Prognostic biomarkers for oral tongue squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 117:856–866. https://doi.org/10.1038/bjc.2017.244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS et al (2014) Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomed 9:5001–5011. https://doi.org/10.2147/IJN.S67333

    CAS  Article  Google Scholar 

  4. Baskić D, Popović S, Ristić P, Arsenijević NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridine orange/ethidium bromide. Cell Biol Int 30:924–932. https://doi.org/10.1016/j.cellbi.2006.06.016

    CAS  Article  PubMed  Google Scholar 

  5. Blower PE, Chung JH, Verducci JS, Lin S, Park JK et al (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9. https://doi.org/10.1158/1535-7163.MCT-07-0573

    CAS  Article  PubMed  Google Scholar 

  6. Chen C, Liu R, Wang J, Yan Z, Qian S et al (2015) RNAi knockdown of hypoxia-inducible factor-1α decreased the proliferation, migration, and invasion of hypoxic hepatocellular carcinoma cells. Cell Biochem Biophy 71:1677–1684. https://doi.org/10.1007/s12013-014-0390-x

    CAS  Article  Google Scholar 

  7. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865. https://doi.org/10.1016/j.molcel.2004.12.002

    CAS  Article  PubMed  Google Scholar 

  8. de Carvalho Fraga CA, Alves LR, Marques-Silva L, de Sousa AA, Jorge AS et al (2013) High HIF-1α expression genotypes in oral lichen planus. Clin Oral Inves 17:2011–2015. https://doi.org/10.1007/s00784-013-0920-8

    Article  Google Scholar 

  9. de Souza MG, de Jesus SF, Santos EM, Gomes E, de Paulo SF et al (2020) Radiation therapy reduced blood levels of LDH, HIF-1α, and miR-210 in OSCC. Pathol Oncol Res 26:433–442. https://doi.org/10.1007/s12253-018-0517-2

    CAS  Article  PubMed  Google Scholar 

  10. Dong G, Chen Q, Jiang F, Yu D, Mao Q et al (2016) Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels. Oncotarget 7:68170–68178. https://doi.org/10.18632/oncotarget.11906

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883. https://doi.org/10.1074/jbc.M800731200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fent GM, Casteel SW, Kim DY, Kannan R, Katti K et al (2009) Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed 5:128–135. https://doi.org/10.1016/j.nano.2009.01.007

    CAS  Article  Google Scholar 

  13. Gamal-Eldeen AM, Moustafa D, El-Daly SM, El-Hussieny EA, Saleh S et al (2016) Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice. J Photochem Photobiol B 163:47–56. https://doi.org/10.1016/j.jphotobiol.2016.08.009

    CAS  Article  PubMed  Google Scholar 

  14. Gamal-Eldeen AM, Moustafa D, El-Daly SM, Abo-Zeid M, Saleh S et al (2017) Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother 89:1045–1054. https://doi.org/10.1016/j.biopha.2017.03.006

    CAS  Article  PubMed  Google Scholar 

  15. Gao T, Li JZ, Lu Y, Zhang CY, Li Q, Mao J et al (2016) The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother 80:393–405. https://doi.org/10.1016/j.biopha.2016.02.044

    CAS  Article  PubMed  Google Scholar 

  16. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC et al (2010) hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116:2148–2158. https://doi.org/10.1002/cncr.25009

    Article  PubMed  Google Scholar 

  17. Golchin K, Golchin J, Ghaderi S, Alidadiani N, Eslamkhah S et al (2018) Gold nanoparticles applications: from artificial enzyme till drug delivery. Artif Cells Nanomed Biotechnol 46:250–254. https://doi.org/10.1080/21691401.2017.1305393

    CAS  Article  PubMed  Google Scholar 

  18. Guimarães TA, Farias LC, Santos ES, de Carvalho Fraga CA, Orsini LA et al (2016) Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget 7:55057–55068. https://doi.org/10.18632/oncotarget.10842

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hansen MB, Nielsen SE, Berg A (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210. https://doi.org/10.1016/0022-1759(89)90397-9

    CAS  Article  PubMed  Google Scholar 

  20. Höckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276. https://doi.org/10.1093/jnci/93.4.266

    Article  PubMed  Google Scholar 

  21. Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20. https://doi.org/10.1016/j.canlet.2010.10.025

    CAS  Article  PubMed  Google Scholar 

  22. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW et al (2007) Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341. https://doi.org/10.1002/smll.200600427

    CAS  Article  PubMed  Google Scholar 

  23. Koukourakis MI, Giatromanolaki A, Skarlatos J, Corti L, Blandamura S et al (2001) Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res 61:1830–1832

    CAS  PubMed  Google Scholar 

  24. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53. https://doi.org/10.1111/j.1582-4934.2008.00556.x

    CAS  Article  PubMed  Google Scholar 

  25. Li J, Huang H, Sun L, Yang M, Pan C et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15:3998–4008. https://doi.org/10.1158/1078-0432.CCR-08-3053

    CAS  Article  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  27. Lu Y, Li Y, Wang Z, Xie S, Wang Q et al (2019) Downregulation of RGMA by HIF-1A/miR-210-3p axis promotes cell proliferation in oral squamous cell carcinoma. Biomed Pharmacother 112:108608. https://doi.org/10.1016/j.biopha.2019.108608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Pang X, Yi Z, Zhang J, Lu B, Sung B et al (2010) Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Canc Res 70:1951–1959. https://doi.org/10.1158/0008-5472.CAN-09-3201

    CAS  Article  Google Scholar 

  29. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  Google Scholar 

  30. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Reboiras-López MD, Gándara Rey JM et al (2009) Genetic and molecular alterations associated with oral squamous cell cancer (Review). Oncol Rep 22:1277–1282. https://doi.org/10.3892/or_00000565

    CAS  Article  PubMed  Google Scholar 

  31. Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S et al (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 3:770–781. https://doi.org/10.1158/2159-8290.CD-12-0537

    CAS  Article  PubMed  Google Scholar 

  32. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684. https://doi.org/10.1038/nm0603-677

    CAS  Article  PubMed  Google Scholar 

  33. Puisségur MP, Mazure NM, Bertero T, Pradelli L, Grosso S et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Diff 18:465–478. https://doi.org/10.1038/cdd.2010.119

    CAS  Article  Google Scholar 

  34. Sano D, Myers JN (2007) Metastasis of squamous cell carcinoma of the oral tongue. Canc Metastasis Rev 26(3–4):645–662. https://doi.org/10.1007/s10555-007-9082-y

    CAS  Article  Google Scholar 

  35. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925. https://doi.org/10.1042/BST0370918

    CAS  Article  PubMed  Google Scholar 

  36. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol 15:551–578. https://doi.org/10.1146/annurev.cellbio.15.1.551

    CAS  Article  Google Scholar 

  37. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Br J Cancer 69:7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  38. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421. https://doi.org/10.1016/s0002-9440(10)64554-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. van Dijk BA, Brands MT, Geurts SM, Merkx MA, Roodenburg JL (2016) Trends in oral cavity cancer incidence, mortality, survival and treatment in the Netherlands. Int J Cancer 139:574–583. https://doi.org/10.1002/ijc.30107

    CAS  Article  PubMed  Google Scholar 

  40. Varol N, Konac E, Gurocak OS, Sozen S (2011) The realm of microRNAs in cancers. Mol Biol Rep 38:1079–1089. https://doi.org/10.1007/s11033-010-0205-0

    CAS  Article  PubMed  Google Scholar 

  41. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316. https://doi.org/10.1016/j.oraloncology.2008.06.002

    Article  Google Scholar 

  42. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14:2588–2592. https://doi.org/10.1158/1078-0432.CCR-07-0666

    CAS  Article  PubMed  Google Scholar 

  43. Wu BH, Xiong XP, Jia J, Zhang WF (2011) MicroRNAs: new actors in the oral cancer scene. Oral Oncol 47:314–319. https://doi.org/10.1016/j.oraloncology.2011.03.019

    CAS  Article  PubMed  Google Scholar 

  44. Yang X, Zhu H, Ge Y, Liu J, Cai J et al (2014) Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1α. Tumour Biol 35:10443–10448. https://doi.org/10.1007/s13277-014-2218-0

    CAS  Article  PubMed  Google Scholar 

  45. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, Mao L, Wong DT, Zhou X (2008) Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics 9:69. https://doi.org/10.1186/1471-2164-9-69

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL et al (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46:317–322. https://doi.org/10.3349/ymj.2017.58.3.489

    CAS  Article  Google Scholar 

  47. Yu T, Tang B, Sun X (2017) Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med J 58:489–496. https://doi.org/10.3349/ymj.2017.58.3.489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Zhu S, Zhu L, Yu J, Wang Y, Peng B (2019) Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int J Nanomed 14:5017–5032. https://doi.org/10.2147/IJN.S204628

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project Number (TURSP-2020/103).

Author information

Affiliations

Authors

Contributions

AMG-E designed the study, carried out the molecular biology experiments, and wrote the manuscript; HMB reviewed the manuscript; NSA reviewed the manuscript; EMI contributed in the cell biology part; WFA carried out the fluorescence microscopy analysis; FA contributed in cell biology part and statistics; and BMR contributed in nanoparticles preparation and characterization.

Corresponding author

Correspondence to Amira M. Gamal-Eldeen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethical approval is not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gamal-Eldeen, A.M., Baghdadi, H.M., Afifi, N.S. et al. Gum arabic-encapsulated gold nanoparticles modulate hypoxamiRs expression in tongue squamous cell carcinoma. Mol. Cell. Toxicol. (2021). https://doi.org/10.1007/s13273-021-00117-w

Download citation

Keywords

  • Gum arabic-gold nanoparticles
  • CAL-127
  • HypoxamiRs
  • miR-210
  • miR-21
  • HIF-1α