Comparative analysis of acute and chronic stress-induced neurobehavioral alteration and liver injury in mice

Abstract

Backgrounds

Recent research has shown that stress has a significant influence on the functions of many organs.

Objective

The present study investigated the effect of acute or chronic restraint stress on physiological and psychological processes.

Results

In the acute stress group, body weight and food intake did not change, but in the chronic stress group, food intake significantly increased and body weight was significantly inhibited. ALT and AST levels were significantly increased by both groups. Acute and chronic restraint stress led to different behavioral changes. Serum levels of corticosterone and cortisol were more increased in chronic stress than in acute stress. The levels of neurons and astrocyte in the hippocampus, and the NeuN-positive neuronal cells remained unaffected by acute stress, but were decreased by chronic stress. GFAP-positive astrocytes were increased by both groups.

Conclusion

In summary, our study provides evidence of a relationship between liver injury and behavioral change upon exposure to restraint stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abidin I et al (2004) The effect of chronic restraint stress on spatial learning and memory: relation to oxidant stress. Int J Neurosci 114:683–699. https://doi.org/10.1080/00207450490430543

    CAS  Article  PubMed  Google Scholar 

  2. Adachi S, Kawamura K, Takemoto K (1993) Oxidative damage of nuclear DNA in liver of rats exposed to psychological stress. Cancer Res 53:4153–4155

    CAS  PubMed  Google Scholar 

  3. Amador-Noguez D et al (2007) Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 6:453–470. https://doi.org/10.1111/j.1474-9726.2007.00300.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bao L et al (2008) Protective effects of bilberry (Vaccinium myrtillus L.) extract on restraint stress-induced liver damage in mice. J Agric Food Chem 56:7803–7807. https://doi.org/10.1021/jf800728m

    CAS  Article  PubMed  Google Scholar 

  5. Bao L et al (2010) Bilberry extract protect restraint stress-induced liver damage through attenuating mitochondrial dysfunction. Fitoterapia 81:1094–1101. https://doi.org/10.1016/j.fitote.2010.07.004

    Article  PubMed  Google Scholar 

  6. Bardin L, Malfetes N, Newman-Tancredi A, Depoortere R (2009) Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: relevance to human stress-associated painful pathologies. Behav Brain Res 205:360–366. https://doi.org/10.1016/j.bbr.2009.07.005

    CAS  Article  PubMed  Google Scholar 

  7. Bhatnagar S, Vining C, Iyer V, Kinni V (2006) Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J Neuroendocrinol 18:13–24. https://doi.org/10.1111/j.1365-2826.2005.01375.x

    CAS  Article  PubMed  Google Scholar 

  8. Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33:1089–1098. https://doi.org/10.1016/j.neubiorev.2009.05.004

    Article  PubMed  Google Scholar 

  9. Cao HJ et al (2012) Sarcandra glabra extract reduces the susceptibility and severity of influenza in restraint-stressed mice. Evid Based Complement Alternat Med 2012:236539. https://doi.org/10.1155/2012/236539

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crane JW, French KR, Buller KM (2005) Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress 8:199–211. https://doi.org/10.1080/10253890500333817

    Article  PubMed  Google Scholar 

  11. Gagliano H, Fuentes S, Nadal R, Armario A (2008) Previous exposure to immobilisation and repeated exposure to a novel environment demonstrate a marked dissociation between behavioral and pituitary-adrenal responses. Behav Brain Res 187:239–245. https://doi.org/10.1016/j.bbr.2007.09.006

    CAS  Article  PubMed  Google Scholar 

  12. Gong S et al (2015) Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS ONE 10:e0117503. https://doi.org/10.1371/journal.pone.0117503

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Harris RB et al (1998) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol 275:R1928–1938

    CAS  PubMed  Google Scholar 

  14. Harris RB, Palmondon J, Leshin S, Flatt WP, Richard D (2006) Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Horm Behav 49:615–625. https://doi.org/10.1016/j.yhbeh.2005.12.001

    CAS  Article  PubMed  Google Scholar 

  15. He RR et al (2009) Effects of histamine on lipid metabolic disorder in mice loaded with restraint stress. J Pharmacol Sci 111:117–123

    CAS  Article  Google Scholar 

  16. He RR et al (2011) Protective effect of apple polyphenols against stress-provoked influenza viral infection in restraint mice. J Agric Food Chem 59:3730–3737. https://doi.org/10.1021/jf104982y

    CAS  Article  PubMed  Google Scholar 

  17. Hummel M, Lu P, Cummons TA, Whiteside GT (2008) The persistence of a long-term negative affective state following the induction of either acute or chronic pain. Pain 140:436–445. https://doi.org/10.1016/j.pain.2008.09.020

    Article  PubMed  Google Scholar 

  18. Jeong JY, Lee DH, Kang SS (2013) Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol Metab (Seoul) 28:288–296. https://doi.org/10.3803/EnM.2013.28.4.288

    Article  Google Scholar 

  19. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 16:115–130

    CAS  Article  Google Scholar 

  20. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462. https://doi.org/10.1038/nrn849

    CAS  Article  PubMed  Google Scholar 

  21. Kim HG, Lee JS, Lee JS, Han JM, Son CG (2012) Hepatoprotective and antioxidant effects of Myelophil on restraint stress-induced liver injury in BALB/c mice. J Ethnopharmacol 142:113–120. https://doi.org/10.1016/j.jep.2012.04.023

    Article  PubMed  Google Scholar 

  22. Kim SH et al (2016) Silymarin prevents restraint stress-induced acute liver injury by ameliorating oxidative stress and reducing inflammatory response. Molecules 21:443. https://doi.org/10.3390/molecules21040443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Lau C, Simpson C (2004) Animal models for the study of the effect of prolonged stress on lactation in rats. Physiol Behav 82:193–197. https://doi.org/10.1016/j.physbeh.2004.05.004

    CAS  Article  PubMed  Google Scholar 

  24. Leite-Almeida H et al (2012) Differential effects of left/right neuropathy on rats’ anxiety and cognitive behavior. Pain 153:2218–2225. https://doi.org/10.1016/j.pain.2012.07.007

    Article  PubMed  Google Scholar 

  25. Liu Y et al (2013) Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice. Pharmacol Biochem Behav 103:474–480. https://doi.org/10.1016/j.pbb.2012.09.009

    CAS  Article  PubMed  Google Scholar 

  26. Liu HY et al (2018) Chronic minocycline treatment reduces the anxiety-like behaviors induced by repeated restraint stress through modulating neuroinflammation. Brain Res Bull 143:19–26. https://doi.org/10.1016/j.brainresbull.2018.08.015

    CAS  Article  PubMed  Google Scholar 

  27. Masood A, Nadeem A, Mustafa SJ, O'Donnell JM (2008) Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J Pharmacol Exp Ther 326:369–379. https://doi.org/10.1124/jpet.108.137208

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    CAS  Article  Google Scholar 

  29. Monteggia LM et al (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61:187–197. https://doi.org/10.1016/j.biopsych.2006.03.021

    CAS  Article  PubMed  Google Scholar 

  30. Moore CJ, Cunningham SA (2012) Social position, psychological stress, and obesity: a systematic review. J Acad Nutr Diet 112:518–526. https://doi.org/10.1016/j.jand.2011.12.001

    Article  PubMed  Google Scholar 

  31. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64:300–316. https://doi.org/10.1002/glia.22930

    Article  PubMed  Google Scholar 

  32. Ovejero R et al (2013) Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free-ranging guanacos (Lama guanicoe). J Exp Zool A Ecol Genet Physiol 319:539–547. https://doi.org/10.1002/jez.1833

    CAS  Article  PubMed  Google Scholar 

  33. Parent AJ et al (2012) Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behav Brain Res 229:160–167. https://doi.org/10.1016/j.bbr.2012.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reid MB (2001) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33:371–376

    CAS  Article  Google Scholar 

  35. Santha P et al (2015) Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Front Mol Neurosci 8:88. https://doi.org/10.3389/fnmol.2015.00088

    CAS  Article  PubMed  Google Scholar 

  36. Sha J et al (2019) Dexmedetomidine improves acute stress-induced liver injury in rats by regulating MKP-1, inhibiting NF-κB pathway and cell apoptosis. J Cell Physiol 234:14068–14078. https://doi.org/10.1002/jcp.28096

    CAS  Article  PubMed  Google Scholar 

  37. Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci 13:495–506

    PubMed  PubMed Central  Google Scholar 

  38. Stojanovich L, Marisavljevich D (2008) Stress as a trigger of autoimmune disease. Autoimmun Rev 7:209–213. https://doi.org/10.1016/j.autrev.2007.11.007

    Article  PubMed  Google Scholar 

  39. Strohle A et al (2007) Physical activity and prevalence and incidence of mental disorders in adolescents and young adults. Psychol Med 37:1657–1666. https://doi.org/10.1017/S003329170700089X

    Article  PubMed  Google Scholar 

  40. Tsoi B et al (2011) Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J Pharmacol Sci 117:223–229

    CAS  Article  Google Scholar 

  41. Tyng CM, Amin HU, Saad MNM, Malik AS (2017) The influences of emotion on learning and memory. Front Psychol 8:1454. https://doi.org/10.3389/fpsyg.2017.01454

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vere CC, Streba CT, Streba LM, Ionescu AG, Sima F (2009) Psychosocial stress and liver disease status. World J Gastroenterol 15:2980–2986

    Article  Google Scholar 

  43. Yalcin I et al (2011) A time-dependent history of mood disorders in a murine model of neuropathic pain. Biol Psychiatry 70:946–953. https://doi.org/10.1016/j.biopsych.2011.07.017

    Article  PubMed  Google Scholar 

  44. Yun S et al (2016) Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult nestin-CreERT2/diphtheria toxin fragment a transgenic mice. PLoS ONE 11:e0147256. https://doi.org/10.1371/journal.pone.0147256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032284) and by a grant (No. K17830) from the Korea Institute of Oriental Medicine funded by the Ministry of Education, Science and Technology (MEST), Republic of Korea.

Author information

Affiliations

Authors

Contributions

KIP conceived and designed the study, and supported all materials. TWh, KYK, YWK and HJD performed the experiments, treatments/animal care and statistical analysis. TWO and KYK wrote the manuscript. KIP reviewed the literature, revised the manuscript and coordinated the study. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kwang-Il Park.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights

The experimental procedure followed the actual law of animal protection that was approved by the Institutional Animal Care and Use Committee of Korea Institute of Oriental Medicine, Korea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, T.W., Kim, K., Do, H.J. et al. Comparative analysis of acute and chronic stress-induced neurobehavioral alteration and liver injury in mice. Mol. Cell. Toxicol. (2020). https://doi.org/10.1007/s13273-020-00094-6

Download citation

Keywords

  • Restraint stress
  • Liver injury
  • Neuronal cell death
  • Behavioral change
  • Depressive-like symptoms
  • Anxiety-like behavior