Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell

Abstract

Background

Paclitaxel is a chemotherapeutic drug for cancer, which is isolated from the Pacific yew tree. However, and the molecular mechanism and the antitumor effects of paclitaxel on osteosarcoma cell remain to be explored.

Objective

The aim of our study was to explore the possible molecular mechanisms of apoptosis in osteosarcoma induced by paclitaxel.

Results

Paclitaxel can obviously decrease the proliferation of HOS-732 cells in a dose-dependent manner. Paclitaxel could induce the cell cycle arrest at the G2/M-phase and decreases the CDK5 and CCNE1 expression in HOS-732 cells. Paclitaxel promotes cell apoptosis in HOS-732 cells, which may be contacted to the decreasing of Bcl-2 protein expression. Further, the production of ROS in HOS-732 cells was remarkably increased with the increasing concentration of paclitaxel. Moreover, paclitaxel induces the ER-stress related gene and protein expression (GRP79, DDIT3 mRNA and GRP78, XBP-1 s, IRE1α protein expression) in osteosarcoma cells.

Conclusion

Paclitaxel can inhibit the proliferation of HOS-732 cells and increase ROS and ER-stress response to promote cell apoptosis, suggesting that paclitaxel may represent a new therapeutic option for the treatment and prevention osteosarcoma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A (2019) Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. FEBS J 286:241–278

    CAS  Article  Google Scholar 

  2. Chen C, Hu H, Qiao M, Zhao X, Wang Y, Chen K, Chen D (2015) Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. J Drug Target 23:311–322

    CAS  Article  Google Scholar 

  3. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168:692–706

    CAS  Article  Google Scholar 

  4. Feng J, Shu R, Ning L et al (2017) Synergistic antitumor effects of berbamine and paclitaxel through ROS/Akt pathway in glioma cells. Evid Based Complement Altern Med 2017:1–8

    Google Scholar 

  5. Gibbs CP Jr, Weber K, Scarborough MT (2002) Malignant bone tumors. Instr Course Lect 51:413–428

    PubMed  Google Scholar 

  6. Goldman JW, Waterhouse DM, George B, O’Dwyer PJ, Bhore R, Banerjee S, Lyons L, Louis CU, Ong TJ, Kelly K (2019) Safety and efficacy results of a phase I, open-label study of concurrent and delayed nivolumab in combination with nab-paclitaxel and carboplatin in advanced non-small cell lung cancer. Front Oncol 9:1256

    Article  Google Scholar 

  7. Hu J, Zhang NA, Wang R, Huang F, Li G (2015) Paclitaxel induces apoptosis and reduces proliferation by targeting epidermal growth factor receptor signaling pathway in oral cavity squamous cell carcinoma. Oncol Lett 10:2378–2384

    CAS  Article  Google Scholar 

  8. Ingham M, Schwartz GK (2017) Biology of neoplasia: cell-cycle therapeutics come of age. J Clin Oncol 35:2949–2959

    CAS  Article  Google Scholar 

  9. Javeed A, Ashraf M, Riaz A, Ghafoor A, Afzal S, Mukhtar MM (2009) Paclitaxel and immune system. Eur J Pharm Sci 38:283–290

    CAS  Article  Google Scholar 

  10. Kawiak A, Piosik J, Stasilojc G, Gwizdek-Wisniewska A, Marczak L, Stobiecki M, Bigda J, Lojkowska E (2007) Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol Appl Pharmacol 223:267–276

    CAS  Article  Google Scholar 

  11. Kim SJ, Hwang SG, Shin DY, Kang SS, Chun JS (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFκB-dependent transcription and stabilization by serine 15 phosphorylation. J Biol Chem 277:33501–33508

    CAS  Article  Google Scholar 

  12. Martino C, Pandya D, Lee R, Levy G, Lo T, Lobo S, Frank RC (2020) ATM-mutated pancreatic cancer: clinical and molecular response to gemcitabine/nab-paclitaxel after genome-based therapy resistance. Pancreas 49:143–147

    CAS  Article  Google Scholar 

  13. Mcguire J, Utset-Ward TJ, Reed DR, Lynch CC (2017) Re-calculating! Navigating through the osteosarcoma treatment roadblock. Pharmacol Res 117:54–64

    CAS  Article  Google Scholar 

  14. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64

    CAS  Article  Google Scholar 

  15. Morales-Cano D, Calviño E, Rubio V, Herráez A, Sancho P, Tejedor MC, Diez JC (2013) Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition. Exp Toxicol Pathol 65:1101–1108

    CAS  Article  Google Scholar 

  16. Otsuka R, Iwasa S, Yanai T et al (2020) Impact of peripheral neuropathy induced by platinum in first-line chemotherapy on second-line chemotherapy with paclitaxel for advanced gastric cancer. Int J Clin Oncol 25(4):595–601

    CAS  Article  Google Scholar 

  17. Saad AM, Abdel-Rahman O (2019) Initial systemic chemotherapeutic and targeted therapy strategies for the treatment of colorectal cancer patients with liver metastases. Expert Opin Pharmacother 20:1767–1775

    Article  Google Scholar 

  18. Schmid P, Abraham J, Chan S et al (2020) Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol 38(5):423–433

    Article  Google Scholar 

  19. Shakhwar S, Darwish R, Kamal MM, Nazzal S, Pallerla S, Abu Fayyad A (2020) Development and evaluation of paclitaxel nanoemulsion for cancer therapy. Pharm Dev Technol 25(4):510–516

    CAS  Article  Google Scholar 

  20. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011:792639

    Article  Google Scholar 

  21. Sorokina O, Goryanin I (2012) Preface. Eur J Pharm Sci 46:189

    CAS  Article  Google Scholar 

  22. Vos HI, Coenen MJ, Guchelaar HJ, Te Loo DM (2016) The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov Today 21:1775–1786

    CAS  Article  Google Scholar 

  23. Wang H, Li D, Li X, Ou X, Liu S, Zhang Y, Ding J, Xie B (2016) Mammalian target of rapamycin inhibitor RAD001 sensitizes endometrial cancer cells to paclitaxel-induced apoptosis via the induction of autophagy. Oncol Lett 12:5029–5035

    CAS  Article  Google Scholar 

  24. Weng CS, Wu CC, Chen TC, Chen JR, Huang CY, Chang CL (2015) Retrospective analysis of comparative outcomes in recurrent platinum-sensitive ovarian cancer treated with pegylated liposomal doxorubicin (Lipo-Dox) and carboplatin versus paclitaxel and carboplatin. Eur J Cancer 51:352–358

    Article  Google Scholar 

  25. Xu R, Sato N, Yanai K, Akiyoshi T, Nagai S, Wada J, Koga K, Mibu R, Nakamura M, Katano M (2009) Enhancement of paclitaxel-induced apoptosis by inhibition of mitogen-activated protein kinase pathway in colon cancer cells. Anticancer Res 29:261–270

    CAS  PubMed  Google Scholar 

  26. Yang C, Lim W, Bazer FW, Song G (2017) Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress. Cancer Lett 399:10–19

    CAS  Article  Google Scholar 

  27. Zhang X, Huang J, Yu C et al (2020) Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Oncotargets Ther 13:513–523

    CAS  Article  Google Scholar 

  28. Zhong Y, Su T, Shi Q, Feng Y, Tao Z, Huang Q, Li L, Hu L, Li S, Tan H, Liu S, Yang H (2019) Co-administration of iRGD enhances tumor-targeted delivery and anti-tumor effects of paclitaxel-loaded PLGA nanoparticles for colorectal cancer treatment. Int J Nanomed 14:8543–8560

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Contributions of authors involved in conception and design of study (ML, LY, LW, YZ, XW); analysis and interpretation of data (ML, LY); writing the article (LW, YZ, XW); critical revision of the article (ML, XW); final approval of the article (ML, LY, LW, YZ, XW). All authors have read and approved the manuscript in its current state.

Corresponding author

Correspondence to Xi Wang.

Ethics declarations

Conflict of interest

The authors declare that they no competing inerests.

Ethical statements

Approval for the present study was obtained by the Ethics Committee of the first people’s hospital of Wenling (Zhengjiang, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yin, L., Wu, L. et al. Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell. Mol. Cell. Toxicol. (2020). https://doi.org/10.1007/s13273-020-00093-7

Download citation

Keywords

  • Paclitaxel
  • Reactive oxygen species
  • COX-2
  • Osteosarcoma