Skip to main content
Log in

Skin transcriptome profiling reveals the distinctive molecular effects of temperature changes on Antarctic bullhead notothen

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Temperature is an important abiotic factor that directly influences the physiology of marine fish. The Antarctic bullhead notothen Notothenia coriiceps inhabits water with temperatures ranging from — 1.9 to 2°C at circumpolar regions. Thus, N. coriiceps is useful as a model animal for understanding the effects of temperature stress.

Methods

To assess the transcriptional response of skin tissue to temperature changes, Antarctic bullhead notothen were exposed to two temperature stresses, 4°C and — 2°C, following acclimatization at 2°C. Twenty-four hours after the temperature change, skin transcriptomes were sequenced using the Illumina Hiseq 2000 platform and analyzed using a series of bioinformatics tools. Functional gene annotations through pathway analyses of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed commonly or distinctively modulated transcriptional changes in skin.

Results

Both temperature stressors significantly upregulated the actin cytoskeleton regulation pathway and the skin’s water barrier function, while the stressors downregulated the metabolism involved in muscle contraction, choline receptor regulation, collagen regulation, and immunity. Cold stress caused significant downregulation of the mRNA expression of genes involved in vasopressin-regulated water reabsorption. Neither the heat- nor cold-stressed skin transcriptomes exhibited significant heat shock protein expression.

Conclusion

Our results suggest that, as a first barrier for fish, the skin has complex metabolisms with high transcriptional sensitivity against environmental temperature stress. These results will be useful for understanding the skin-specific molecular mechanisms that Antarctic fish use to adapt to temperature fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Somero, G. N. & DeVries, A. L. Temperature tolerance of some Antarctic Fishes. Science 156, 257–258 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Eastman, J. T. The nature of the diversity of Antarctic fishes. Polar Biol 28, 93–107 (2005).

    Article  Google Scholar 

  3. Cheng, C. H. & Detrich, H. W., 3rd. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 362, 2215–2232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petricorena, Z. L. & Somero, G. N. Biochemical adaptations of notothenioid fishes: Comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A 147, 799–807 (2007).

    Article  CAS  Google Scholar 

  5. Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J Exp Biol 218, 1834–1845 (2015).

    Article  PubMed  Google Scholar 

  6. Mueller, I. A. et al. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes. J Exp Biol 215, 3655–3664 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Strobel, A., Leo, E., Pörtner, H. O. & Mark, F. C. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comp Biochem Physiol B 166, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Machado, C. et al. Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic nototheniids Notothenia coriiceps and Notothenia rossii. Comp Biochem Physiol B 172–173, 21–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Klein, R. D. et al. Antioxidant defense system and oxidative status in Antarctic fishes: The sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii. J Thermal Biol 68, 119–127 (2017).

    Article  CAS  Google Scholar 

  10. Beers, J. M. & Sidell, B. D. Thermal tolerance of Antarctic Notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84, 353–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol A 158, 382–390 (2011).

    Article  CAS  Google Scholar 

  12. Shin, S. C. et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol 15, 468 (2014).

    Google Scholar 

  13. Valerio, P. F., Kao, M. H. & Fletcher, G. L. Fish skin: An effective barrier to ice crystal propagation. J Exp Biol 164, 135–151 (1992).

    Article  Google Scholar 

  14. Benhamed, S., Guardiola, F. A., Mars, M. & Esteban, M. Á. Pathogen bacteria adhesion to skin mucus of fishes. Vet Microbiol 171, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon, A. & Hannon, G. Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Unpublished Available online at: https://doi.org/http://hannonlab.cshl.edu/fastx_toolkit (2010).

    Google Scholar 

  17. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iger, Y. & Wendelaar Bonga, S. E. Cellular responses of the skin of carp (Cyprinus carpio) exposed to acidified water. Cell Tissue Res 275, 481–492 (1994).

    Article  Google Scholar 

  20. Iger, Y., Jenner, H. A. & Wendelaar Bonga, S. E. Cellular responses in the skin of rainbow trout (Oncorhynchus mykiss) exposed to Rhine water. J Fish Biol 45, 1119–1132 (1994).

    Article  Google Scholar 

  21. Quiniou, S. M. A., Bigler, S., Clem, L. W. & Bly, J. E. Effects of water temperature on mucous cell distribution in channel catfish epidermis: a factor in winter saprolegniasis. Fish Shellfish Immunol 8, 1–11 (1998).

    Article  Google Scholar 

  22. Vatsos, I. N., Kotzamanis, Y., Henry, M., Angelidis, P. & Alexis, M. Monitoring stress in fish by applying image analysis to their skin mucous cells. Eur J Histochem 54, e22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jensen, L. B. et al. Investigating the underlying mechanisms of temperature-related skin diseases in Atlantic salmon, Salmo salar L., as measured by quantitative histology, skin transcriptomics and composition. J Fish Dis 38, 977–992 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, Z., Schneider, C., Boeglin, W. E., Marnett, L. J. & Brash, A. R. The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proc Natl Acad Sci U S A 100, 9162–9167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lefevre, C. et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Human Mol Gen 13, 2473–2482 (2004).

    Article  CAS  Google Scholar 

  26. Cooper, S. T., Harkness, P. C., Baker, E. R. & Millar, N. S. Up-regulation of Cell-surface α4β2 Neuronal Nicotinic Receptors by Lower Temperature and Expression of Chimeric Subunits. J Biol Chem 274, 27145–27152 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Gage, P. W. & McBurney, R. N. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum or acetylcholine at the toad neuromuscular junction. J Physiol 244, 385–407 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta, S. & Auerbach, A. Temperature Dependence of Acetylcholine Receptor Channels Activated by Different Agonists. Biophys J 100, 895–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valenzano, D. R., Terzibasi, E., Cattaneo, A., Domenici, L. & Cellerino, A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5, 275–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol 20, 137–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Hofmann, G. E., Buckley, B. A., Place, S. P. & Zippay, M. L. Molecular chaperones in ectothermic marine animals: Biochemical function and gene expression. Integr Comp Biol 42, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hofmann, G. E., Buckley, B. A., Airaksinen, S., Keen, J. E. & Somero, G. N. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203, 2331–2339 (2000).

    CAS  PubMed  Google Scholar 

  33. Hofmann, G. E., Lund, S. G., Place, S. P. & Whitmer, A. C. Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes. J Exp Mar Biol Ecol 316, 79–89 (2005).

    Article  CAS  Google Scholar 

  34. Buckley, B. A., Place, S. P. & Hofmann, G. E. Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. J Exp Biol 207, 3649–3656 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Clark, M. S., Fraser, K. P. P., Burns, G. & Peck, L. S. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol 31, 171–180 (2008).

    Article  Google Scholar 

  36. Thorne, M. A. S., Burns, G., Fraser, K. P. P., Hillyard, G. & Clark, M. S. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genomics 3, 35–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Bilyk, K. T. & Cheng, C. H. C. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki. BMC Genomics 14, 634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nielsen, S. et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92, 1013–1017 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Hyoung Kim or Hyun Park.

Electronic supplementary material

13273_2019_20_MOESM1_ESM.pdf

Skin transcriptome profiling reveals the distinctive molecular effects of temperature changes on Antarctic bullhead notothen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BM., Ahn, DH., Kang, S. et al. Skin transcriptome profiling reveals the distinctive molecular effects of temperature changes on Antarctic bullhead notothen. Mol. Cell. Toxicol. 15, 163–172 (2019). https://doi.org/10.1007/s13273-019-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0020-1

Keywords

Navigation