Skip to main content
Log in

The associations of TAC1 gene polymorphisms with major depressive disorder

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Substance P, which is encoded by tachykinin precursor 1 gene (TAC1), has been implicated in the regulation of stress responses and the pathogenesis of major depressive disorder (MDD).

Methods

We evaluated the association of 10 SNPs on TAC1 with MDD susceptibility in 111 patients with MDD and 79 control subjects, and with 17-item Hamilton depression rating scale (HAMD17) score in MDD patients.

Results

In all subjects, haplotype (ht) 2 homozygous individuals showed higher plasma substance P levels than subjects carrying one or no copy of ht2. The minor allele frequency of rs1397202 was higher in patients with MDD than that in control subjects. Patients homozygous for the minor allele of rs1397202 showed significantly lower HAMD17 scores than patients carrying the common allele.

Conclusion

Our results suggest a possible involvement of genetic variants of TAC1 with the plasma level of substance P and symptom severity of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirschfeld, R. M. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61 Suppl 6, 4–6 (2000).

    CAS  PubMed  Google Scholar 

  2. Massart, R., Mongeau, R. & Lanfumey, L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond B Biol Sci 367, 2485–2494, doi:https://doi.org/10.1098/rstb.2012.0212 (2012).

  3. Kramer, M. S. et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29, 385–392, doi:https://doi.org/10.1038/sj.npp.1300260 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Hafizi, S., Chandra, P. & Cowen, J. Neurokinin-1 receptor antagonists as novel antidepressants: trials and tribulations. Br J Psychiatry 191, 282–284, doi:10.1192/bjp.bp.107.037879 (2007).

    Google Scholar 

  5. Ebner, K. & Singewald, N. The role of substance P in stress and anxiety responses. Amino Acids 31, 251–272, doi:https://doi.org/10.1007/s00726-006-0335-9 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. DeVane, C. L. Substance P: a new era, a new role. Pharmacotherapy 21, 1061–1069 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ebner, K., Rupniak, N. M., Saria, A. & Singewald, N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci U S A 101, 4280–4285, doi:https://doi.org/10.1073/pnas.0400794101 (2004).

    Google Scholar 

  8. Kramer, M. S. et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640–1645 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Geracioti, T. D., Jr. et al. Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am J Psychiatry 163, 637–643, doi:https://doi.org/10.1176/appi.ajp.163.4.637 (2006).

    Article  PubMed  Google Scholar 

  10. Shirayama, Y., Mitsushio, H., Takashima, M., Ichikawa, H. & Takahashi, K. Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat. Brain Res 739, 70–78 (1996).

    Article  PubMed  Google Scholar 

  11. Kendler, K. S., Gatz, M., Gardner, C. O. & Pedersen, N. L. A Swedish national twin study of lifetime major depression. Am J Psychiatry 163, 109–114, doi:https://doi.org/10.1176/appi.ajp.163.1.109 (2006).

    Article  PubMed  Google Scholar 

  12. Lopez-Leon, S. et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 13, 772–785, doi:https://doi.org/10.1038/sj.mp.4002088 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Ebner, K., Muigg, P., Singewald, G. & Singewald, N. Substance P in stress and anxiety: NK-1 receptor antagonism interacts with key brain areas of the stress circuitry. Ann N Y Acad Sci 1144, 61–73, doi:https://doi.org/10.1196/annals.1418.018 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Z., Yang, Y., Walker, D. L. & Davis, M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology 34, 331–340, doi:https://doi.org/10.1038/npp.2008.55 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Sergeyev, V. et al. Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology (Berl) 178, 115–124, doi:https://doi.org/10.1007/s00213-004-2015-3 (2005).

    Article  CAS  Google Scholar 

  16. Hay, C. W. et al. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones. Psychoneuroendocrinology 47, 43–55, doi:https://doi.org/10.1016/j.psyneuen.2014.04.017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karpouzis, A. et al. Assessment of Tachykinin Receptor 3′ Gene Polymorphism rs3733631 in Rosacea. Int Sch Res Notices 2015, 469402, doi:https://doi.org/10.1155/2015/469402 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Bilkei-Gorzo, A., Racz, I., Michel, K. & Zimmer, A. Diminished anxiety- and depression-related behaviors in mice with selective deletion of the Tac1 gene. J Neurosci 22, 10046–10052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marui, T. et al. Tachykinin 1 (TAC1) gene SNPs and haplotypes with autism: a case-control study. Brain Dev 29, 510–513, doi:https://doi.org/10.1016/j.braindev.2007.01.010 (2007).

    Article  PubMed  Google Scholar 

  20. Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 23, 56–62 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedrick, P. W. Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68, 978–989, doi:S0002-9297 (07)61424-4 [pii]10.1086/319501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575, doi:https://doi.org/10.1086/519795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nyholt, D. R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74, 765–769, doi:https://doi.org/10.1086/383251 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Carter, M. S. & Krause, J. E. Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci 10, 2203–2214 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duffy, R. A. Potential therapeutic targets for neurokinin-1 receptor antagonists. Expert Opin Emerg Drugs 9, 9–21, doi:10.1517/eoed.9.1.9.32956 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Frisch, P., Bilkei-Gorzo, A., Racz, I. & Zimmer, A. Modulation of the CRH system by substance P/NKA in an animal model of depression. Behav Brain Res 213, 103–108, doi:https://doi.org/10.1016/j.bbr.2010.04.044 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Ribeiro-da-Silva, A. & Hokfelt, T. Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides 34, 256–271, doi:https://doi.org/10.1054/npep.2000.0834 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hurd, Y. L., Keller, E., Sotonyi, P. & Sedvall, G. Preprotachykinin-A mRNA expression in the human and monkey brain: An in situ hybridization study. J Comp Neurol 411, 56–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Weiss, D. W. et al. Studies in psychoneuroimmunology: psychological, immunological, and neuroendocrinological parameters in Israeli civilians during and after a period of Scud missile attacks. BehavMed 22, 5–14, doi:https://doi.org/10.1080/08964289.1996.9933760 (1996).

    CAS  Google Scholar 

  32. Bondy, B. et al. Substance P serum levels are increased in major depression: preliminary results. Biol Psychiatry 53, 538–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Rimon, R. et al. Elevation of substance P-like peptides in the CSF of psychiatric patients. Biol Psychiatry 19, 509–516 (1984).

    CAS  PubMed  Google Scholar 

  34. Lieb, K. et al. Serum levels of substance P and response to antidepressant pharmacotherapy. Pharmacopsychiatry 37, 238–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zimmer, A. et al. Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA 95, 2630–2635 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, Y. F. et al. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep 5, 16037, doi:https://doi.org/10.1038/srep16037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Munoz, M. & Covenas, R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 46, 1727–1750, doi:https://doi.org/10.1007/s00726-014-1736-9 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Clark, J. W., Senanayake, P. D., Solomon, G. D. & Gallagher, C. Substance P: correlation of CSF and plasma levels. Headache 34, 261–264 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Chappa, A. K., Audus, K. L. & Lunte, S. M. Characteristics of substance P transport across the blood-brain barrier. Pharm Res 23, 1201–1208, doi:https://doi.org/10.1007/s11095-006-0068-1 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Li, L. et al. Plasma and cerebrospinal fluid substance P in post-stroke patients with depression. Psychiatry Clin Neurosci 63, 298–304, doi:https://doi.org/10.1111/j.1440-1819.2009.01936.x (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hun Soo Chang or Byung-Joo Ham.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, E., Han, KM., Kim, A. et al. The associations of TAC1 gene polymorphisms with major depressive disorder. Mol. Cell. Toxicol. 15, 129–136 (2019). https://doi.org/10.1007/s13273-019-0016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0016-x

Keywords

Navigation