Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 241–245 | Cite as

Diethylamino-curcumin mimic with trizolyl benzene enhances TRAIL-mediated cell death on human glioblastoma cells

  • Yongchel Ahn
  • Seokjoon Lee
  • Cheon-Soo Park
  • Hyuk Jai Jang
  • Ji Hwan Lee
  • Byong-Gon Park
  • Yoon-Sun Park
  • Woon-Seob Shin
  • Daeho Kwon
Original Paper

Abstract

Backgrounds

Glioblastoma multiforme is one of the most aggressive human malignant brain tumors. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as the death ligand, which induces preferential apoptosis of transformed cancer cells. In this study, we demonstrated that the newly synthesized diethylamino-curcumin mimic with trizolyl benzene (YM-4) enhances cytotoxicity in combination with TRAIL in human glioblastoma cells.

Methods

We synthesized diethylamino-curcumin mimic with trizolyl benzene (YM-4) and investigated possible apoptotic cell signaling by co-treatment with YM-4 and TRAIL on human glioblastoma cells.

Results

Caspase-8, 9, and 3 and poly (ADP-ribose) polymerase were more efficiently cleaved with cotreatment of YM-4 and TRAIL than treatment with each alone in human glioblastoma cells. Co-treatment with YM-4 and TRAIL significantly increased the expression of Bax and Smac/Diablo and also inhibited the expression of the X-linked inhibitor of apoptosis protein and Survivin in human glioblastoma cells.

Conclusion

These results demonstrated that YM-4 can be an anticancer candidate that can be effective on human glioblastoma cells in combination with TRAIL.

Keywords

Curcumin mimic TRAIL Apoptosis Human glioblastoma cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grossman, S. A. et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16, 2443–2449 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352, 987–996 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    Srimal, R. C. & Dhawan, B. N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447–452 (1973).CrossRefPubMedGoogle Scholar
  4. 4.
    Sharma, O. P. et al. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25, 1811–1812 (1976).CrossRefPubMedGoogle Scholar
  5. 5.
    Li, C. J., Zhang, L. J., Dezube, B. J., Crumpacker, C. S. & Pardee, A. B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci U S A 90, 1839–1842 (1993).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brouet, I. & Ohshima, H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).CrossRefPubMedGoogle Scholar
  7. 7.
    Sidhu, G. S. et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7, 362–374 (1999).CrossRefPubMedGoogle Scholar
  8. 8.
    Aggarwal, B. B., Kumar, A. & Bharti, A. C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).PubMedGoogle Scholar
  9. 9.
    Hanif, R., Qiao, L., Shiff, S. J. & Rigas, B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130, 576–584 (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    Simon, A. et al. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Lett 129, 111–116 (1998).CrossRefPubMedGoogle Scholar
  11. 11.
    Sharma, R. A. et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10, 6847–6854 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    Vallianou, N. G., Evangelopoulos, A., Schizas, N. & Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35, 645–651 (2015).PubMedGoogle Scholar
  13. 13.
    French, L. E. & Tschopp, J. The TRAIL to selective tumor death. Nat Med 5, 146–147 (1999).CrossRefPubMedGoogle Scholar
  14. 14.
    Ahn, Y. et al. Synthesis of diethylamino-curcumin mimics with substituted triazolyl groups and their sensitization effect of TRAIL against brain cancer cells. Bioorg Med Chem Lett 24, 3346–3350 (2014).CrossRefPubMedGoogle Scholar
  15. 15.
    Kim, J. H., Choi, C., Benveniste, E. N. & Kwon, D. TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells. Biochem Biophys Res Commun 377, 195–199 (2008).CrossRefPubMedGoogle Scholar
  16. 16.
    Kwon, D. & Liew, H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol Cell Toxicol 13, 229–238 (2017).CrossRefGoogle Scholar
  17. 17.
    Park, S. K. et al. Synthesis of substituted triazolyl curcumin mimics that inhibit RANKL-induced osteoclastogenesis. Bioorg Med Chem Lett 21, 3573–3577 (2011).CrossRefPubMedGoogle Scholar
  18. 18.
    Trivedi, R. & Mishra, D. P. Trailing TRAIL resistance: novel targets for TRAIL sesitization in cancer cells. Front Oncol 5, 69 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dai, S. et al. SCD1 Confers Temozolomide resistance to human glioma cells via the Akt/GSK3β/β-Catenin signaling axis. Front Pharmacol 8, 960 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hamacher-Brady, A. & Brady, N. R. Bax/Bak-dependent, Drp1-independent targeting of X-linked Inhibitor of apoptosis protein (XIA P) into inner mitochondrial compartments counteracts Smac/DIABLO -dependent effector caspase activation. J Biol Chem 290, 220005–220018 (2015).CrossRefGoogle Scholar
  21. 21.
    Tamm, I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58, 5315–5320 (1998).PubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yongchel Ahn
    • 1
  • Seokjoon Lee
    • 2
  • Cheon-Soo Park
    • 3
  • Hyuk Jai Jang
    • 3
  • Ji Hwan Lee
    • 4
  • Byong-Gon Park
    • 5
  • Yoon-Sun Park
    • 6
  • Woon-Seob Shin
    • 6
  • Daeho Kwon
    • 6
  1. 1.Department of Hematology and Oncology, Gangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungRepublic of Korea
  2. 2.Department of PharmacologyCatholic Kwandong University College of MedicineGangneungRepublic of Korea
  3. 3.Department of Surgery, Gangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungRepublic of Korea
  4. 4.Medical Research Center, Gangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungRepublic of Korea
  5. 5.Department of PhysiologyCatholic Kwandong University College of MedicineGangneungRepublic of Korea
  6. 6.Department of MicrobiologyCatholic Kwandong University College of MedicineGangneungRepublic of Korea

Personalised recommendations