Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 193–199 | Cite as

Dendropanax morbifera Léveille extract ameliorates cesium-induced inflammation in the kidney and decreases antioxidant enzyme levels in the hippocampus

  • Hyo Young Jung
  • Hyun Jung Kwon
  • Kyu Ri Hahn
  • Dae Young Yoo
  • Woosuk Kim
  • Jong Whi Kim
  • Yong Jae Kim
  • Yeo Sung Yoon
  • Dae Won Kim
  • In Koo Hwang
Original Paper

Abstract

Backgrounds

In this study, we investigated the effects of Dendropanax morbifera Léveille leaf extract (DML) on cesium-exposed kidneys and hippocampi of rats.

Methods

Seven-week-old Sprague-Dawley rats received a daily oral dose of 500 mg/kg cesium chloride and/or DML (30, 100, and 300 mg/kg) for 4 weeks. Animals were killed 2 h after the last cesium chloride and/or DML treatment. Blood, liver, and kidney cesium levels were assessed by inductively coupled plasma mass spectrometry. In addition, inflammatory parameters of the kidney such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 levels were measured by western blot analysis, and activity of antioxidant enzymes such as Cu, Zn-superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (GPx) was assessed in the hippocampus.

Results

Cesium chloride treatment significantly increased the levels of cesium in blood, and in the kidney and liver by 200 times or more, but the administration of DML did not show any significant effect on the levels of cesium in any tissue. Nevertheless, the administration of DML significantly ameliorated the cesium-induced increase in iNOS, COX-2, TNF-α, IL-1β, and IL-6 levels in the kidney in a dose-dependent manner. In addition, the administration of DML reversed the cesium-induced decrease in the levels of antioxidant enzymes such as SOD1 and GPx, but not of CAT, in the hippocampus.

Conclusion

These results suggest that DML reduces the cesium-induced inflammatory response in the kidney and the hippocampal decrease in antioxidant enzymes levels, although it could not decrease the accumulation of cesium in the blood, kidney, and liver.

Keywords

Dendropanax morbifera extract Cesium Kidney Hippocampus Inflammation Antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kretsinger, R. H., Uversky, V. N. & Permyakov, E. A. Encyclopedia of Metalloproteins. Melnikov, P. & Zanoni, L. Z. (Eds). Cesium, therapeutic effects and toxicity. pp. 590–594. Springer, New York (2013).Google Scholar
  2. 2.
    Centeno, J. A. et al. Blood and tissue concentration of cesium after exposure to cesium chloride: a report of two cases. Biol Trace Elem Res 94, 97–104 (2003).CrossRefPubMedGoogle Scholar
  3. 3.
    Sartori, H. E. Nutrients and cancer: an introduction to cesium therapy. Pharmacol Biochem Behav 21(Suppl 1), 7–10 (1984).CrossRefPubMedGoogle Scholar
  4. 4.
    Melnikov, P. & Zanoni, L. Z. Clinical effects of cesium intake. Biol Trace Elem Res 135, 1–9 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    Messiha, F. S. Developmental toxicity of cesium in the mouse. Gen Pharmacol 25, 395–400 (1994).CrossRefPubMedGoogle Scholar
  6. 6.
    Kim, W. et al. Dendropanax morbifera Léveille extract facilitates cadmium excretion and prevents oxidative damage in the hippocampus by increasing antioxidant levels in cadmium-exposed rats. BMC Complement Altern Med 14, 428 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim, W. et al. Antioxidant effects of Dendropanax morbifera Léveille extract in the hippocampus of mercury-exposed rats. BMC Complement Altern Med 15, 247 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim, J. M. et al. Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav Brain Res 312, 39–54 (2016).CrossRefPubMedGoogle Scholar
  9. 9.
    Seo, J. S. et al. Effects of Dendropanax morbifera Léveille extracts on cadmium and mercury secretion as well as oxidative capacity: A randomized, double-blinded, placebo-controlled trial. Biomed Rep 4, 623–627 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim, E. S. et al. Protective activity of Dendropanax morbifera against cisplatin-induced acute kidney injury. Kidney Blood Press Res 40, 1–12 (2015).CrossRefPubMedGoogle Scholar
  11. 11.
    Jung, H. Y., Chung, T. H. & Hwang, I. K. Dendropanax morbifera Léveille extract ameliorates memory impairments and inflammatory responses in the hippocampus of streptozotocin-induced type 1 diabetic rats. Mol Cell Toxicol 12, 429–436 (2016).CrossRefGoogle Scholar
  12. 12.
    Akram, M. et al. Potent anti-inflammatory and analgesic actions of the chloroform extract of Dendropanax morbifera mediated by the Nrf2/HO-1 Pathway. Biol Pharm Bull 39, 728–736 (2016).CrossRefPubMedGoogle Scholar
  13. 13.
    Shim, H. J. et al. Extracts from Dendropanax morbifera leaves have modulatory effects on neuroinflammation in microglia. Am J Chin Med 44, 119–132 (2016).CrossRefPubMedGoogle Scholar
  14. 14.
    McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055 (1969).PubMedGoogle Scholar
  15. 15.
    Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44, 276–287 (1971).CrossRefPubMedGoogle Scholar
  16. 16.
    Aebi, H. Catalase in vitro. Methods Enzymol 105, 121–126 (1984).CrossRefPubMedGoogle Scholar
  17. 17.
    Maral, J., Puget, K. & Michelson, A. M. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77, 1525–1535 (1977).CrossRefPubMedGoogle Scholar
  18. 18.
    Nakamura, M., Ra, J. H. & Kim, J. S. The comparative analysis of antioxidant and biological activity for the Dendropanax morbifera LEV. leaves extracted by different ethanol concentrations. Yakugaku Zasshi 136, 1285–1296 (2016).CrossRefPubMedGoogle Scholar
  19. 19.
    Wiens, M. et al. Cesium chloride-induced torsades de pointes. Can J Cardiol 25, e329–e331 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Itharat, A. & Hiransai, P. Dioscoreanone suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW 264.7 macrophages by NF-κB and ERK1/2 signaling transduction. J Cell Biochem 113, 3427–3435 (2012).CrossRefPubMedGoogle Scholar
  21. 21.
    Tetsuka, T. et al. Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest 97, 2051–2056 (1996).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kirkby, N. S. et al. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression. PLoS One 8, e69524 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Park, B. Y. et al. Isolation and anticomplement activity of compounds from Dendropanax morbifera. J Ethnopharmacol 90, 403–408 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    Yu, H. Y., Kim, K. S., Lee, Y. C., Moon, H. I. & Lee, J. H. Oleifolioside A, a new active compound, attenuates LPS-stimulated iNOS and COX-2 expression through the downregulation of NF-κB and MAPK activities in RAW 264.7 macrophages. Evid Based Complement Alternat Med 2012, 637512 (2012).PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hyun, T. K., Ko, Y. J., Kim, E. H., Chung, I. M. & Kim, J. S. Anti-inflammatory activity and phenolic composition of Dendropanax morbifera leaf extracts. Ind Crop Prod 74, 263–270 (2015).CrossRefGoogle Scholar
  26. 26.
    Moon, H. I. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocin-induced diabetic rats. Hum Exp Toxicol 30, 870–875 (2011).CrossRefPubMedGoogle Scholar
  27. 27.
    Park, J. U. et al. Tetradecanol reduces EL -4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 799, 135–142 (2017).CrossRefPubMedGoogle Scholar
  28. 28.
    Pizzorno, J. E. Jr. & Murrary, M. T. Textbook of natural medicine (4th ed). Chapter 144 Alzheimer’s disease. pp. 1189–1199. Elsevier Health Sciences, St. Louis (2012).Google Scholar
  29. 29.
    Fridovich, I. The biology of oxygen radicals. Science 201, 875–880 (1978).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hyo Young Jung
    • 1
  • Hyun Jung Kwon
    • 2
  • Kyu Ri Hahn
    • 1
  • Dae Young Yoo
    • 1
    • 3
  • Woosuk Kim
    • 1
  • Jong Whi Kim
    • 1
  • Yong Jae Kim
    • 4
  • Yeo Sung Yoon
    • 1
  • Dae Won Kim
    • 2
  • In Koo Hwang
    • 1
  1. 1.Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of DentistryGangneung-Wonju National UniversityGangneungRepublic of Korea
  3. 3.Department of Anatomy, College of MedicineSoonChunhyang UniversityCheonanRepublic of Korea
  4. 4.HBJbiofarm Research InstituteJejuRepublic of Korea

Personalised recommendations