Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 155–162 | Cite as

Proteomic analysis of muscarinic acetylcholine receptor-mediated proliferation in HT-29 human colon cancer cells

  • Soo Youn Lee
  • Ar-Reum Lee
  • Ji-Young Ahn
  • Jung Ho Ko
  • Lyon Lee
  • Janet Han
  • Young-Chang Kim
  • Yang-Hoon Kim
Original Paper
  • 12 Downloads

Abstract

Backgrounds

Muscarinic acetylcholine receptors (mAChRs) are members of G-protein-coupled receptors. They can induce agonist-dependent neoplastic transformation and facilitate colon cancer proliferation via promoting rapid expression of a variety of early responsive genes.

Methods

In this study, we used 2-dimensional gel electrophoresis (2-DE) approach with subsequent mass spectrometry (MS) to identify up- and down-regulated proteins (a total of 23 protein spots) involved in mAChRs-related signaling pathway, energy metabolism, transcription/translation, oxidative stress metabolism and cytoskeleton organization in agonist carbachol stimulated HT-29 human colon cells.

Results

We found that the increased expression of adenocarcinoma biomarker, annexin A5 (ANXA5) induced by carbachol treatment, which was confirmed by immunoblot. This study contributes to the understanding of mechanisms underlying mAChRs agonist-induced expression of whole proteins in HT-29 colon cancer cells.

Conclusion

Our results indicated that ANXA5 might serve as a potential biomarker for the diagnosis of colon cancer.

Keywords

Proteomics Muscarinic acetylcholine receptor Agonist Carbachol Colon cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schuller, H. M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer 9, 195–205 (2009).CrossRefPubMedGoogle Scholar
  2. 2.
    Yang, W.-L. & Frucht, H. Cholinergic receptor up-regulates COX-2 expression and prostaglandin E2 production in colon cancer cells. Carcinogenesis 21, 1789–1793 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    Park, Y.-S. & Cho, N. J. EGFR and PKC are involved in the activation of ERK1/2 and p90 RSK and the subsequent proliferation of SNU-407 colon cancer cells by muscarinic acetylcholine receptors. Mol Cell Biochem 370, 191–198 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    Sales, M. E. Muscarinic receptors as targets for metronomic therapy in breast cancer. Curr Pharm Des 14, 2170–2177 (2016).CrossRefGoogle Scholar
  5. 5.
    Raufman, J.-P. et al. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem Biophys Res Commun 415, 319–324 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ockenga, W. et al. Epidermal growth factor receptor transactivation is required for mitogen-activated protein kinase activation by muscarinic acetylcholine receptors in HaCaT keratinocytes. Int J Mol Sci 15, 21433–21454 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rosenvinge, E. C. & Raufman, J.-P. Muscarinic receptor signaling in colon cancer. Cancers 3, 971–981 (2011).CrossRefGoogle Scholar
  8. 8.
    Ockenga, W. et al. Epidermal growth factor receptor transactivation is required for mitogen-activated protein kinase activation by muscarinic acetylcholine receptors in HaCaT keratinocytes. Int J Mol Sci 14, 21433–21454 (2014).CrossRefGoogle Scholar
  9. 9.
    Liu, H. Hu, C., Wu, X. & Li, Z. Equol elicits estrogenic activities via PI3K/akt pathway in the estrogen receptor-positive MCF-7 cells. Mol Cell Toxicol 10, 285–291 (2014).CrossRefGoogle Scholar
  10. 10.
    Zhou, G.-Z., Sun, G.-C. & Zhang, S.-N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Mol Cell Toxicol 11, 29–34 (2015).CrossRefGoogle Scholar
  11. 11.
    Chen, J.-S. et al. Comparison of membrane fraction proteomic profiles of normal and cancerous human colorectal tissues with gel-assisted digestion and iTRAQ labeling mass spectrometry. FEBS J 277, 3028–3038 (2010).CrossRefPubMedGoogle Scholar
  12. 12.
    Coghlin, C. & Murray, G. I. Biomarkers of colorectal cancer: recent advances and future challenges. Proteomics Clin Appl 9, 64–71 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    Ukegawa, J.-I., Takeuchi, Y., Kusayanagi, S. & Mitamura, K. Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 129, 272–278 (2003).PubMedGoogle Scholar
  14. 14.
    Mejías-Luque, R. et al. Changes in the invasive and metastatic capacities of HT-29/M3 cells induced by the expression of fucosyltransferase 1. Cancer Sci 98, 1000–1005 (2007).CrossRefPubMedGoogle Scholar
  15. 15.
    Park, J. Meisler, A. I. & Cartwright, C. A. c-Yes tyrosine kinase activity in human colon carcinoma. Oncogene 8, 2627–2635 (1993).PubMedGoogle Scholar
  16. 16.
    Chahdi, A. & Raufman, J.-P. The Cdc42/Rac nucleotide exchange factor protein β1Pix (Pak-interacting exchange factor) modulates β-catenin transcriptional activity in colon cancer cells. Evidence for direct interaction of β 1Pix with β-catenin. J Biol Chem 288, 34019–34029 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Peng, C. W. et al. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene 35, 206–217 (2016).CrossRefGoogle Scholar
  18. 18.
    Minton, D. R. et al. Role of NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 in clear cell renal cell carcinoma. Clin Cancer Res (2016) in press.Google Scholar
  19. 19.
    Nakayama, K. et al. Mutation of GDP-mannose-4,6-dehydratase in colorectal cancer metastasis. Plos ONE 8, e70298 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim, J.-H., Ryu, A.-R., Kang, M.-J. & Lee, M.-Y. Berberine-induced changes in protein expression and antioxidant enzymes in melanoma cells. Mol Cell Toxicol 12, 53–61 (2016).CrossRefGoogle Scholar
  21. 21.
    Pyrkov, T. V. et al. Structure-based design of smallmolecule ligands of phosphofructokinase-2 activating or inhibiting glycolysis. Chem Med Chem 8, 1322–1329 (2013).CrossRefPubMedGoogle Scholar
  22. 22.
    Belo, A. et al. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion. Am J Physiol Gastrointest Liver Physiol 300, G749–G760 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fazekas, K. et al. Experimental and clinicopathologic studies on the function of the HGF receptor in human colon cancer metastasis. Clin Exp Metastasis 1, 639–649 (2000).CrossRefGoogle Scholar
  24. 24.
    Cheng, K. et al. Divergent effects of muscarinic receptor subtype gene ablation on murine colon tumorigenesis reveals association of M3R and zinc finger protein 277 expression in colon neoplasia. Molecular Cancer 13, 77 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rosenvinge, E. C. & Raufman, J.-P. Muscarinic receptor signaling in colon cancer. Cancers 3, 971–981 (2011).CrossRefGoogle Scholar
  26. 26.
    Cheng, Y.-L., Zhang, G.-Y., Li, C. & Lin, J. Screening for novel protein targets of indomethacin in HCT116 human colon cancer cells using proteomics. Oncology Lett 6, 1222–1228 (2013).CrossRefGoogle Scholar
  27. 27.
    Álvarez-Chaver, P. et al. Proteomics for discovery of candidate colorectal cancer biomarkers. World J Gastroenterol 20, 3804–3824 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xue, G. et al. Expression of annexin A5 is associated with higher tumor stage and poor prognosis in colorectal adenocarcinomas. J Clin Gastroenterol 43, 831–837 (2009).CrossRefPubMedGoogle Scholar
  29. 29.
    Ungethűm, L. et al. Molecular imaging of cell death in tumors. Increasing annexin A5 size reduces contribution of phosphatidylserine-targeting function to tumor uptake. Plos ONE 9, e96749 (2014).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Soo Youn Lee
    • 1
    • 2
  • Ar-Reum Lee
    • 2
  • Ji-Young Ahn
    • 2
  • Jung Ho Ko
    • 3
  • Lyon Lee
    • 3
  • Janet Han
    • 3
  • Young-Chang Kim
    • 2
  • Yang-Hoon Kim
    • 2
  1. 1.Gwangju Bio/Energy R&D CenterKorea Institute of Energy Research (KIER)GwangjuRepublic of Korea
  2. 2.School of Biological SciencesChungbuk National UniversityCheongjuRepublic of Korea
  3. 3.College of Veterinary MedicineWestern University of Health SciencesPomonaUSA

Personalised recommendations