Advertisement

Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 143–153 | Cite as

Low-dose diethylhexyl phthalate exposure does not impair the expressive patterns of epigenetics-related genes and DNA methylation of breast cancer-related genes in mouse mammary glands

  • Shun-Feng Cheng
  • Ling Li
  • Bo Li
  • Jing-Cai Liu
  • Fang-Nong Lai
  • Yong Zhao
  • Xi-Feng Zhang
  • Wei Shen
  • Lan Li
Original Paper
  • 196 Downloads

Abstract

Backgrounds

Di-(2-ethylhexyl) phthalate (DEHP), as an endocrine-disrupting chemical (EDC), is widely used in plasticizer and other productions. Ubiquitous human exposure to DEHP has been proposed to be a potential risk to public health. Developmental exposure to DEHP could alter epigenetic programming and result in adult-onset disease.

Methods

In this study, we investigated whether DEHP exposure to pregnant mice affected epigenetic changes as a result of increase in breast cancer incidence.

Results

Our results showed that the expression of total 143 epigenetics-related genes in mammary gland cells, have no significantly altered after short time and low-dose treated with DEHP from 0.5 days post-coitum (dpc) to 3.5 dpc of pregnant mice. DNA methylation status of some neoplastic development genes, such as EGFr, Esr1, Pgr, Fos and Rassf5 also had no obvious change.

Conclusion

These finding showed no impact of DEHP on the expressive patterns of epigenetics-related genes and DNA methylation of breast cancer-related genes in pregnant mouse mammary gland cells.

Keywords

DEHP Mammary gland cells Epigenetics DNA methylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13273_2018_16_MOESM1_ESM.pdf (2.9 mb)
Low-dose diethylhexyl phthalate exposure does not impair the expressive patterns of epigenetics-related genes and DNA methylation of breast cancer-related genes in mouse mammary glands

References

  1. 1.
    Ayyanan, A. et al. Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number. Mol Endocrinol 25, 1915–1923 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li, L. et al. Impact of diethylhexyl phthalate on gene expression and development of mammary glands of pregnant mouse. Histochem Cell Biol 144, 389–402 (2015).CrossRefPubMedGoogle Scholar
  3. 3.
    Rajesh, P. & Balasubramanian, K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol 223, 47–66 (2014).CrossRefPubMedGoogle Scholar
  4. 4.
    Guo, Y. et al. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J Agric Food Chem 60, 6913–6919 (2012).CrossRefPubMedGoogle Scholar
  5. 5.
    Li, L. et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep 41, 1227–1235 (2014).CrossRefPubMedGoogle Scholar
  6. 6.
    Lamartiniere, C. A. et al. Exposure to the Endocrine Disruptor Bisphenol A Alters Susceptibility for Mammary Cancer. Horm Mol Biol Clin Investig 5, 45–52 (2011).PubMedPubMedCentralGoogle Scholar
  7. 7.
    Dhimolea, E. et al. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One 9, e99800 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wadia, P. R. et al. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One 8, e63902 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tharp, A. P. et al. Bisphenol A alters the development of the rhesus monkey mammary gland. Proc Natl Acad Sci U S A 109, 8190–8195 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lawson, C. et al. Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol Reprod 84, 79–86 (2011).CrossRefPubMedGoogle Scholar
  11. 11.
    Singh, S. & Li, S. S. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13, 10143–10153 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Anway, M. D., Rekow, S. S. & Skinner, M. K. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91, 30–40 (2008).CrossRefPubMedGoogle Scholar
  13. 13.
    Schwartz, D. & Collins, F. Medicine. Environmental biology and human disease. Science 316, 695–696 (2007).PubMedGoogle Scholar
  14. 14.
    Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31, 363–373 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bhan, A. et al. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 141, 160–170 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kundakovic, M. & Champagne, F. A. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun 25, 1084–1093 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dairkee, S. H., Luciani-Torres, M. G., Moore, D. H. & Goodson, W. H., 3rd. Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells. Carcinogenesis 34, 703–712 (2013).CrossRefPubMedGoogle Scholar
  18. 18.
    Paulose, T., Speroni, L., Sonnenschein, C. & Soto, A. M. Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer. Reprod Toxicol 54, 58–65 (2015).CrossRefPubMedGoogle Scholar
  19. 19.
    Newbold, R. R. Prenatal exposure to diethylstilbestrol (DES). Fertil Steril 89, e55–56 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    Potischman, N. & Troisi, R. In-utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control 10, 561–573 (1999).CrossRefPubMedGoogle Scholar
  21. 21.
    Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    Kang, S. C. & Lee, B. M. DNA methylation of estrogen receptor alpha gene by phthalates. J Toxicol Environ Health A 68, 1995–2003 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    Doherty, L. F. et al. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1, 146–155 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hsieh, T. H. et al. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J 26, 778–787 (2012).CrossRefPubMedGoogle Scholar
  25. 25.
    von Meyenn, F. et al. Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Mol Cell 62, 983 (2016).CrossRefGoogle Scholar
  26. 26.
    Fan, K. et al. Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A (ACF1). Biomol NMR Assign 10, 131–134 (2016).CrossRefPubMedGoogle Scholar
  27. 27.
    Forzati, F. et al. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation. Biol Open 3, 871–879 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao, S. et al. Expression profiles of inhibitor of growth protein 2 in normal and cancer tissues: An immunohistochemical screening analysis. Mol Med Rep 13, 1881–1887 (2016).CrossRefPubMedGoogle Scholar
  29. 29.
    Pan, Y. Q. et al. Decreased expression of ING2 gene and its clinicopathological significance in Chinese NSCLC patients. Neoplasma 61, 468–475 (2014).CrossRefPubMedGoogle Scholar
  30. 30.
    Romani, M., Pistillo, M. P. & Banelli, B. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. Biomed Res Int 2015, 587983 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martinez-Arguelles, D. B. & Papadopoulos, V. Identification of hot spots of DNA methylation in the adult male adrenal in response to in utero exposure to the ubiquitous endocrine disruptor plasticizer di-(2-ethylhexyl) phthalate. Endocrinology 156, 124–133 (2015).CrossRefPubMedGoogle Scholar
  32. 32.
    Xin, F., Susiarjo, M. & Bartolomei, M. S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol 43, 66–75 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wu, S. et al. Dynamic effect of di-2-(ethylhexyl) phthalate on testicular toxicity: epigenetic changes and their impact on gene expression. Int J Toxicol 29, 193–200 (2010).CrossRefPubMedGoogle Scholar
  34. 34.
    Hsieh, T. H. et al. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol Sci 128, 365–376 (2012).CrossRefPubMedGoogle Scholar
  35. 35.
    Guida, N. et al. Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol Appl Pharmacol 280, 190–198 (2014).CrossRefPubMedGoogle Scholar
  36. 36.
    Mu, X. et al. DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms. J Hazard Mater 298, 232–240 (2015).CrossRefPubMedGoogle Scholar
  37. 37.
    Choudhary, D. et al. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 414, 91–100 (2003).CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang, T. et al. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. Environ Mol Mutagen 55, 343–353 (2014).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shun-Feng Cheng
    • 1
  • Ling Li
    • 2
  • Bo Li
    • 3
  • Jing-Cai Liu
    • 1
  • Fang-Nong Lai
    • 1
  • Yong Zhao
    • 1
  • Xi-Feng Zhang
    • 4
  • Wei Shen
    • 1
  • Lan Li
    • 1
  1. 1.Institute of Reproductive Sciences, College of Animal Science and TechnologyQingdao Agricultural UniversityQingdaoChina
  2. 2.Tengzhou People’s HospitalTengzhouChina
  3. 3.Chengguo Station of Animal Husbandry and VeterinaryLaizhouChina
  4. 4.College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina

Personalised recommendations