Advertisement

Molecular & Cellular Toxicology

, Volume 13, Issue 1, pp 105–113 | Cite as

Transcriptome response of the Pacific oyster, Crassostrea gigas susceptible to thermal stress: A comparison with the response of tolerant oyster

Original Paper

Abstract

Although oysters are exposed to seasonal temperature changes, they are frequently subjected to acute temperature stress during emersion due to their attachment on their rocky shore habitats. To understand the effect of acute temperature elevation on the whole transcriptome of susceptible Pacific oyster Crassostrea gigas over time, the oysters were exposed to temperatures ranging from the control 20°C to 32°C for 72 h. We compared the genome-wide patterns of mRNA expression of susceptible oysters with those obtained from thermotolerant oysters. RNA-seq identified differentially expressed stress responsive Gene Ontology (GO) terms and relevant transcripts following acute thermal stress. The clearest pattern between susceptible and tolerant oysters was the dramatic differences in transcriptional expression in the hsp70 gene family. GO terms and genes typically associated with oxygen binding were also repressed compared to those of tolerant oysters. This study provides insights into the significant differences in molecular response of susceptible C. gigas to acute heat stress, and the will further our understanding of the basis of molecular adaptation in the Pacific oyster.

Keywords

Crassostrea gigas Marine invertebrate Transcriptome Temperature Susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13273_2017_11_MOESM1_ESM.pdf (5.3 mb)
Supplementary material, approximately 5438 KB.

References

  1. 1.
    Scholander, P. F., Flagg, W., Walters, V. & Irving, L. Climatic Adaptation in Arctic and Tropical Poikilotherms. Physiol Zool 26:67–92 (1953).CrossRefGoogle Scholar
  2. 2.
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond B Biol Sci 362:2233 (2007).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Shatkin, G., Shumway, S. & Hawes, R. Considerations regarding the possible introduction of the pacific oyster (Crassostrea gigas) to the Gulf of Maine: A review of global experience. Oceanograph Lit Rev 9:1677 (1998).Google Scholar
  4. 4.
    Ruesink, J. L. et al. Changes in productivity associated with four introduced species: ecosystem transformation of a ‘pristine’ estuary. Mar Ecol Prog Ser 311:203–215 (2006).CrossRefGoogle Scholar
  5. 5.
    Meistertzheim, A.-L., Tanguy, A., Moraga, D. & Thébault, M.-T. Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 274:6392–6402 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    Park, H., Ahn, I.-Y. & Lee, H. E. Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones 12:275–282 (2007).PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Clark, M. S., Fraser, K. P. P. & Peck, L. S. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13:39–49 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kim, M., Ahn, I.-Y., Kim, H., Cheon, J. & Park, H. Molecular characterization and induction of heat shock protein 90 in the Antarctic bivalve Laternula elliptica. Cell Stress Chaperones 14:363–370 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    Farcy, É., Voiseux, C., Lebel, J.-M. & Fiévet, B. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chaperones 14:371–380 (2009).PubMedCrossRefGoogle Scholar
  10. 10.
    Truebano, M. et al. Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. J Exp Mar Biol Ecol 391:65–72 (2010).CrossRefGoogle Scholar
  11. 11.
    Liu, D. & Chen, Z. The expression and induction of heat shock proteins in molluscs. Protein Pept Lett 20:602–606 (2013).PubMedCrossRefGoogle Scholar
  12. 12.
    Chu, N. D., Miller, L. P., Kaluziak, S. T., Trussell, G. C. & Vollmer, S. V. Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail Nucella lapillus. Mol Ecol 23:6104–6113 (2014).PubMedCrossRefGoogle Scholar
  13. 13.
    Gleason, L. U. & Burton, R. S. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol 24:610–627 (2015).PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu, Q., Zhang, L., Li, L., Que, H. & Zhang, G. Expression characterization of stress genes under high and low temperature stresses in the Pacific oyster, Crassostrea gigas. Mar Biotechnol 18:176–188 (2016).PubMedCrossRefGoogle Scholar
  15. 15.
    Guo, X., He, Y., Zhang, L., Lelong, C. & Jouaux, A. Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immunol 46:107–119 (2015).PubMedCrossRefGoogle Scholar
  16. 16.
    Mann, R., Burreson, E. M. & Baker, P. K. The decline of the virginia oyster fishery in chesapeake bay: Considerations for introduction of a non-endemic species, Crassostrea gigas (Thunberg, 1793). J Shellfish Res 10:379–388 (1991).Google Scholar
  17. 17.
    FAO, 2012. Cultured Aquatic Species Information Programme. Crassostrea gigas. Helm, M.M., In: FAO Fisheries and Aquaculture Department. Rome.Google Scholar
  18. 18.
    Shamseldin, A., Clegg, J. S., Friedman, C. S., Cherr, G. N. & Pillai, M. Induced thermotolerance in the Pacific oyster, Crassostrea gigas. J Shellfish Res 16:487–491 (1997).Google Scholar
  19. 19.
    Hamdoun, A. M., Cheney, D. P. & Cherr, G. N. Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): Implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160–169 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, G. et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54 (2012).PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang, G. et al. Molecular basis for adaptation of oysters to stressful marine intertidal environments. Annu Rev Anim Biosci 4:357–381 (2016).PubMedCrossRefGoogle Scholar
  22. 22.
    Clegg, J. et al. Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30 (1998).Google Scholar
  23. 23.
    Ivanina, A. V., Taylor, C. & Sokolova, I. M. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 91:245–254 (2009).PubMedCrossRefGoogle Scholar
  24. 24.
    Lang, R. P. et al. Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Mar Biotechnol 11:650–668 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J Proteome Res 14:304–317 (2015).PubMedCrossRefGoogle Scholar
  26. 26.
    Lim, H.-J. et al. Thermal stress induces a distinct transcriptome profile in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol Part D 19:62–70 (2016).Google Scholar
  27. 27.
    Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    Weber, R. E. & Vinogradov, S. N. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628 (2001).PubMedGoogle Scholar
  29. 29.
    Terwilliger, R. C., Terwilliger, N. B. & Arp, A. Thermal vent clam (Calyptogena magnifica) hemoglobin. Science 219:981–983 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    Gavira, J. A. et al. Structure and ligand selection of hemoglobin II from Lucina pectinata. J Biol Chem 283:9414–9423 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bao, Y., Wang, Q. & Lin, Z. Hemoglobin of the bloody clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish Shellfish Immunol 31:517–523 (2011).PubMedCrossRefGoogle Scholar
  32. 32.
    Ramos-Alvarez, C. et al. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata. Biochemistry 52:7007–7021 (2013).PubMedCrossRefGoogle Scholar
  33. 33.
    Xu, B. et al. Role of hemoglobin from blood clam Scapharca kagoshimensis beyond oxygen transport. Fish Shellfish Immunol 44:248–256 (2015).PubMedCrossRefGoogle Scholar
  34. 34.
    Montes-Rodríguez, I. M., Rivera, L. E., López-Garriga, J. & Cadilla, C. L. Characterization and expression of the Lucina pectinata oxygen and sulfide Binding hemoglobin genes. PLoS ONE 11:e0147977 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Podrabsky, J. E. & Somero, G. N. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    Yao, C. L. & Somero, G. N. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J Exp Biol 215:4267–4277 (2012).PubMedCrossRefGoogle Scholar
  37. 37.
    Park, M. S. et al. Effects of antifouling biocides on molecular and biochemical defense system in the gill of the pacific oyster Crassostrea gigas. PLoS ONE 11:e0168978 (2017).CrossRefGoogle Scholar
  38. 38.
    Lim, H.-J. et al. Transcriptome profiling of the Pacific oyster Crassostrea gigas by Illumina RNA-seq. Genes Genomics 38:359–365 (2015).CrossRefGoogle Scholar
  39. 39.
    Du, Y. et al. Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34:939–945 (2013).PubMedCrossRefGoogle Scholar
  40. 40.
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Unit of Polar GenomicsKorea Polar Research InstituteIncheonRepublic of Korea
  2. 2.Division of Bioengineering, College of Life Sciences and BioengineeringIncheon National UniversityIncheonRepublic of Korea
  3. 3.Department of Agriculture and Life IndustryKangwon National UniversityChuncheonRepublic of Korea
  4. 4.Department of Marine Science, College of Natural SciencesIncheon National UniversityIncheonRepublic of Korea
  5. 5.Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
  6. 6.Institute of Green Environmental Research CenterIncheonRepublic of Korea

Personalised recommendations