Discharge characteristics of drilled throttle orifices in fiber-reinforced plastics for an HLFC system

Abstract

A series of test campaigns at DLR’s large flow meter (LFM) has been conducted to investigate the discharge characteristics of cylindrical throttle orifices, drilled in fiber-reinforced plastics, with respect to their diameter and manufacturing imperfections. In hybrid laminar flow control (HLFC) applications following the simplified so-called ALTTA concept, those throttle holes interfacing a common plenum to multiple chambers play an important role in regulating the local amount of suction through the porous wing surface. The work performed aims at the further development and industrialized application of HLFC in an aircraft environment. This question is tackled by the industry-oriented drilling of throttle holes into coupon-sized flat samples. Drilling parameters allowing a stable and reproducible process were established through optical inspection. The major experimental findings are discussed in this article alongside some general manufacturing recommendations for throttle holes in HLFC applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

A :

Orifice area (mm2)

C :

Discharge coefficient (–)

D :

Orifice diameter (mm)

n :

Drilling speed (rpm)

p :

Static pressure (Pa)

t :

Laminate thickness (mm)

v f :

Drill feed (mm/min)

α :

Conicity angle (°)

ρ :

Density (kg/m3)

γ :

Ratio of specific heats (–)

FVC:

Fiber volume content (%)

References

  1. 1.

    European Commission: Flightpath 2050—Europe’s Vision for Aviation. European Union (2011)

  2. 2.

    Airbus: Global market forecast 2017–2036—growing horizons (2017) (Online). https://www.airbus.com/aircraft/market/global-market-forecast.html. Accessed 1 Aug 2017

  3. 3.

    Boeing: Global market forecast 2017–2036 (2017) (Online). http://www.boeing.com/commercial/market/current-market-outlook-2017/. Accessed 1 Aug 2017

  4. 4.

    Henke, R.: The Airbus A320 HLF Fin Programme. Nouvelle Revue d’Aeronautique et d’Astronautique 2, 53–55 (1998)

    Google Scholar 

  5. 5.

    Joselin, R.: Overview of laminar flow control. In: NASA/TP-1998-208705, National Aeronautics and Space Administration, Langley Research Center (1998)

  6. 6.

    Horstmann, K.-H., Schrauf, G., Sawyers, D., Sturm, H.: Simplified suction system for a HLFC leading edge box of an A320 fin. In: CEAS aerospace aerodynamics research conference, Cambridge (2002)

  7. 7.

    Horn, M., Frhr, H., Geyr, V., Weddig, T., Bruns, J., Schradick, M.: Auslegung, Fertigung und Funktionsdemonstration einer HLFC Leading Edge. In: Deutscher Luft- und Raumfahrtkongress, Braunschweig (2016)

  8. 8.

    Idelchik, I.E.: Handbook of hydraulic resistance, English translation from the second Russian edition, 1975. Jaico Publishing House, Mumbai (2003)

    Google Scholar 

  9. 9.

    Tesař, V.: Characterisation of inexpensive, simply shaped nozzles. Chem. Eng. Res. Des. 88(11), 1433–1444 (2010)

    Article  Google Scholar 

  10. 10.

    Walter, A., Forbes, A., Schneider, M., Birenbaum, C., Mayer, T., Burkhardt, J.: “Spanende Bearbeitung von Leichtbauwerkstoffen—Einführung und Überblick”, e-mobil BW. Landesagentur für Elektromobilität und Brennstoffzellentechnologie, Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), Stuttgart (2012)

    Google Scholar 

  11. 11.

    Shetty, N., Herbert, M.A., Shetty, D.S., Vijay, G.S., Shetty, R., Shivamurthy, B.: Experimental investigation in drilling of carbon fiber reinforced polymer composite using HSS and solid carbide drills. Int. J. Curr. Eng. Technol. 5, 313–320 (2015)

    Google Scholar 

  12. 12.

    Seitz, A.: Messkörper, Durchflussmesssystem und Computerprogramm dafür (Patent pending). Patent 20 2014 104 037, 04. 12 (2015)

  13. 13.

    Eickenbusch, H., Krauss, O.: Kohlenstofffaserverstärkte Kunststoffe im Fahrzeugbau—Ressourceneffizienz und Technologien. VDI Zentrum Ressourceneffizienz GmbH, Berlin (2013)

    Google Scholar 

  14. 14.

    Kappel, E., Liebers, N., Buggisch, M., Hilmer, P., Hühne, C.: Holistic quality approach for autoclave injection composite manufacturing. JEC Compos. Mag. 96, 30–32 (2015)

    Google Scholar 

  15. 15.

    Kappel, E., Buggisch, M., Wockatz, R., Prado, V.: Manufacture of nominal-shape composite stiffeners using autoclave injection. JEC Compos. Mag. 106, 37–39 (2016)

    Google Scholar 

  16. 16.

    EASA: Advisory material AMC 20-29: composite structure; annex II to ED decision 2010/003/R of 19/07/2010, European Union Aviation Safety Agency (2010)

  17. 17.

    Schrauf, G.: SCDP—a suction chamber design program—version 1.4. Technical report, GSSC TR 8.4, Bremen, Germany (2013)

Download references

Acknowledgements

This project has received funding from the Clean Sky 2 joint undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. CS2‐LPA-GAM‐2014‐2015‐01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Kilian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilian, T., Forßbohm, T., Seitz, A. et al. Discharge characteristics of drilled throttle orifices in fiber-reinforced plastics for an HLFC system. CEAS Aeronaut J 11, 431–439 (2020). https://doi.org/10.1007/s13272-019-00416-y

Download citation

Keywords

  • Hybrid laminar flow control
  • Experimental aerodynamics
  • Manufacturing
  • Carbon fiber-reinforced plastics (CFRP)