Dynamic collision avoidance using local cooperative airplanes decisions

Abstract

In the near future, air traffic control (ATC) will have to cope with a radical change in the structure of air transport [1]. Apart from the increase in traffic that will push the system to its limits, the insertion of new aerial vehicles such as drones into the airspace, with different flight performances, will increase its heterogeneity. Current research aims at increasing the level of automation and partial delegation of the control to on-board systems. In this work, we investigate the collision avoidance management problem using a decentralized distributed approach. We propose an autonomous and generic multi-agent system to address this complex problem. We validate our system using state-of-the-art benchmarks. The results underline the adequacy of our local and cooperative approaches to efficiently solve the studied problem.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    This slightly simplifies the experimental setup while also providing problems that are harder to solve, as the agents are more constrained.

References

  1. 1.

    Prandini, M., Piroddi, L., Puechmorel, S., Brázdilová, S.L.: Toward air traffic complexity assessment in new generation Air Traffic Management systems. IEEE Trans. Intell. Transp. Syst. 12(3), 809–818 (2011). [Online]. https://hal-enac.archives-ouvertes.fr/hal-01020894

  2. 2.

    Latombe, J.-C.: Robot Motion Planning, vol. 124. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  3. 3.

    Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: Decentralized centroid and formation control for multi-robot systems. In: Robotics and Automation (ICRA), 2013 IEEE international conference on. IEEE, pp. 3511–3516 (2013)

  4. 4.

    Huang, C., Chen, X., Zhang, Y., Qin, S., Zeng, Y., Li, X.: Hierarchical model predictive control for multi-robot navigation. In: Brewka, G. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI'16), pp. 3140–3146. AAAI Press

  5. 5.

    Tian, Y., Sarkar, N.: Formation control of mobile robots subject to wheel slip. In: Robotics and automation (ICRA), 2012 IEEE International Conference on. IEEE, pp. 4553–4558 (2013)

  6. 6.

    Serugendo, G.D.M., Gleizes, M.-P., Karageorgos, A.: Self-Organising Software: From Natural to Artificial Adaptation. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  7. 7.

    Brax, N.: Self-adaptive multi-agent systems for aided decision-making: an application to maritime surveillance, Ph.D. dissertation, Université de Toulouse, Université Toulouse III-Paul Sabatier (2013)

  8. 8.

    Boes, J., Migeon, F., Gatto, F.: Self-organizing agents for an adaptive control of heat engines. ICINCO 1, 243–250 (2013)

    Google Scholar 

  9. 9.

    Nigon, J., Gleizes, M.-P., Migeon, F.: Self-adaptive model generation for ambient systems. Procedia Comput. Sci. 83, 675–679 (2016)

    Article  Google Scholar 

  10. 10.

    Delahaye, D., Peyronne, C., Mongeau, M., Puechmorel, S.: Aircraft conflict resolution by genetic algorithm and b-spline approximation. In: EIWAC 2010, 2nd ENRI International Workshop on ATM/CNS, pp. 71 (2010)

  11. 11.

    Durand, N., Alliot, J.-M.: Ant colony optimization for air traffic conflict resolution. In: ATM Seminar 2009, 8th USA/Europe air traffic management research and development seminar (2009)

  12. 12.

    Christodoulou, M.A., Kontogeorgou, C.: Collision avoidance in commercial aircraft free flight via neural networks and non-linear programming. Int. J. Neural Syst. 18(05), 371–387 (2008)

    Article  Google Scholar 

  13. 13.

    Roussos, G., Kyriakopoulos, K.J.: Completely decentralised navigation functions for agents with finite sensing regions with application in aircraft conflict resolution. In: Decision and control and european control conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE, pp. 7470–7475 (2011)

  14. 14.

    Guys, L., Puechmorel, S., Lapasset, L.: Automatic conflict solving using biharmonic navigation functions. Procedia Soc. Behav. Sci. 54, 1378–1387 (2012)

    Article  Google Scholar 

  15. 15.

    Maas, J., Sunil, E., Ellerbroek, J., Hoekstra, J.: The effect of swarming on a voltage potential-based conflict resolution algorithm. In: submitted to the 7th international conference on research in air transportation (2016)

  16. 16.

    Lehouillier, T., Nasri, M.I., Soumis, F., Desaulniers, G., Omer, J.: Solving the air conflict resolution problem under uncertainty using an iterative biobjective mixed integer programming approach. Transp. Sci. 51, 1242–1258 (2017)

    Article  Google Scholar 

  17. 17.

    Allignol, C., Barnier, N., Durand, N., Alliot, J.-M.: A new framework for solving en-routes conflicts. In: ATM 2013, 10th USA/Europe Air Traffic Management Research and Development Seminar, Chicago, United States, pp 1–9. [Online]. https://hal-enac.archives-ouvertes.fr/hal-00828736 (2013)

  18. 18.

    Machado, P., Bousson, K.: Automatic collision avoidance system based on geometric approach applied to multiple aircraft. In: 6th international conference on research in air transportation (ICRAT 2014) (2014)

  19. 19.

    Lin, C.E., Lee, C.-J.: Conflict detection and resolution model for low altitude flights. In: Methods and models in automation and robotics (MMAR), 2015 20th International Conference on. IEEE, pp. 406–411 (2015)

  20. 20.

    Van Den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Robot. Res. 2011, 3–19 (2009)

    MATH  Google Scholar 

  21. 21.

    Allignol, C., Barnier, N., Durand, N., Blond, E.: Detect & avoid, uav integration in the lower airspace traffic. In: ICRAT 2016, 7th international conference on research in air transportation (2016)

  22. 22.

    Breil, R., Delahaye, D., Lapasset, L., Féron, É.: Multi-agent systems for air traffic conflicts resolution by local speed regulation. In: 7th international conference on research in air transportation (ICRAT 2016) (2016)

  23. 23.

    Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The amas theory for complex problem solving based on self-organizing cooperative agents. In: Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on. IEEE, pp. 383–388 (2003)

  24. 24.

    Bonjean, N., Mefteh, W., Gleizes, M.P., Maurel, C., Migeon, F.: Adelfe 2.0. In: Handbook on agent-oriented design processes. Springer, pp. 19–63 (2014)

  25. 25.

    Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000)

    Article  Google Scholar 

  26. 26.

    Rantrua, A., Maesen, E., Chabrier, S., Gleizes, M.-P.: Learning aircraft behavior from real air traffic. J. Air Traffic Control 57(4), 10–14 (2015)

    Google Scholar 

  27. 27.

    Averty, P., Johansson, B., Wise, J., Capsie, C.: Could erasmus speed adjustments be identifiable by air traffic controllers. In: 7th USA/Europe air traffic management research and development seminar (ATM2007), vol. 22 (2007)

  28. 28.

    Authority, F.A.: Aeronautical information manual: Official guide to basic flight information and ATV procedures (2006)

  29. 29.

    Durand, N., Barnier, N.: Does atm need centralized coordination? Autonomous conflict resolution analysis in a constrained speed environment. Air Traffic Control Q. 23(4), 325–346 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sopra Steria Group and the ANRT for their support in this research work.

Funding

This work was supported by the Association Nationale de la Recherche et de la Technologie (Grant no. 2016/0940).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Augustin Degas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Degas, A., Rantrua, A., Kaddoum, E. et al. Dynamic collision avoidance using local cooperative airplanes decisions. CEAS Aeronaut J 11, 309–320 (2020). https://doi.org/10.1007/s13272-019-00400-6

Download citation

Keywords

  • Trajectory optimization
  • Automation strategies
  • Conflict resolution
  • Self-separation
  • Multi-agent systems
  • Self-organization