Evaluation of piston engine modes and configurations in composite cycle engine architectures

Abstract

Radical aircraft propulsion concepts based on a Composite Cycle Engine architecture are presented to improve significantly the core efficiency of aero engines. Therefore, three different piston engine modes and configurations (a two-stroke and a four-stroke reciprocating piston configuration, as well as a Wankel-type rotary engine) are evaluated to identify the most promising piston engine concept in a Composite Cycle Engine application. The qualitative and quantitative assessment of the piston systems considers thermodynamic performance, weight and NOx emissions, as well as cooling, lubrication and integration aspects. To compare the performance of the different piston systems, models for the non-stationary thermodynamic cycle of the piston engines are presented and integrated in a turbo engine performance simulation framework. A turboshaft platform with 22-MW shaft power at typical take-off conditions and unified state-of-the-art turbo component characteristics are used for the evaluation of the piston configurations. Further, approaches for the prediction of piston engine weights, cooling fin design and NOx emissions are introduced. The four-stroke reciprocation piston engine configuration is identified as most promising option due to the best combination of thermal material requirements, NOx emissions and specific fuel consumption. It is found that the high scavenging efficiency and the lower temperature level compared to the two-stroke engine compensate the additional scavenging cycle. A preliminary geometric design of the four-stroke piston engines is illustrated for the investigated application case.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(modified from [3])

Abbreviations

b :

Cooling fin thickness

d :

Length

e :

Eccentricity

h :

Specific enthalpy

l :

Cooling fin length

m :

Mass

n :

Number of rotors

p :

Pressure

r :

Radius

s :

Cooling fin spacing

u :

Inner energy

A :

Surface area

H :

Enthalpy

P :

Power

Q :

Heat flow

R :

Rotor radius

T :

Temperature

V :

Volume

VPR:

Rotor combustion pocket volume

α :

Heat transfer coefficient

Ƞ :

Efficiency

λ :

Heat conductivity coefficient

ρ :

Density

σ :

Material strength

∆:

Delta

References

  1. 1.

    Commission, European: Flight-path 2050: Europe’s vision for aviation. Publications Office of the European Union, Luxembourg (2011)

    Google Scholar 

  2. 2.

    ACARE: Strategic Research and Innovation Agenda, vol. 1 (2012)

  3. 3.

    Kaiser, S., Donnerhack S., Lundbladh A., Seitz A.: A composite cycle engine concept with hecto-pressure ratio. J Propuls. Power 32, 4028 (2016)

  4. 4.

    Kaiser, S., Seitz, A., Vratny, P., Hornung, M.: Unified thermodynamic evaluation of radical aero engine cycles. ASME Turbo Expo, Seoul (2016)

    Google Scholar 

  5. 5.

    Nickl, M., Kaiser, S., Seitz, A., Hornung, M.: Performance modeling of a composite cycle engine with rotary internal combustion engine. DLRK, Braunschweig (2016)

    Google Scholar 

  6. 6.

    Kaiser S., Kellermann H., Nickl M., Seitz A.: A composite cycle engine concept for year 2050. In: International Council of Aeronautical Sciences Belo Horizonte, Brazil (2018)

  7. 7.

    Kaiser S., Nickl M., Salpingidou C., Vlahostergios Z., Donnerhack S.,Klingels H.: Investigations of synergistic combination of the composite cycle and intercooled recuperation. In: 23rd International Symposium of Air Breathing Engines, Manchester, UK (2017)

  8. 8.

    Da Rocha-Schmidt, L., Hermanutz, A., Baier, H., Seitz, A., Bijewitz, J., Isikveren, A. T., Scarpa, F., Allegri, G., Remillat, C., Feuilloley, E., Majic, F., O’Reilly, C., and Efraimsson, G.: Progress towards adaptive aircraft engine nacelles. In: 29th International Congress of the Aeronautical Sciences, St Petersburg, Russia (2014)

  9. 9.

    Seitz, A., Bijewitz, J., Kaiser, S., Wortmann, G.: Conceptual investigation of a propulsive fuselage aircraft layout. Aircr Eng Aerosp Technol J 86, 464–472 (2014)

    Article  Google Scholar 

  10. 10.

    Stricker M., Mailach R., Vogeler K.: Anforderungen an das sekundärluftsystem neuer auf isochoren Verbrennung basierender Flugantriebe. 66. Deutscher Luft- und Raumfahrtkongress, Munich, Germany (2017)

  11. 11.

    Grönstedt, T. et. al.: Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines. ASME Turbo Expo, Seoul, South Korea (2016)

  12. 12.

    Whurr J.: Aircraft compound cycle propulsion engine. United States US5692372 (1997)

  13. 13.

    Austro Engine GmbH. AE300 Fact Sheet. http://austroengine.at/uploads/pdf/mod_products1/AE300FactSheet.pdf. Last Accessed 25 Jan 2019

  14. 14.

    Woschni G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. In: SAE Transactions 76, paper 670931 (1968)

  15. 15.

    Hohenberg G.: Experimentelle Erfassung der Wandwärme von Kolbenmotoren. Habilitation TU Graz. (1980)

  16. 16.

    Van Gerpen J.: Simulation of a combined-cycle engine. NASA contractor report 188232 Iowa State University (1990)

  17. 17.

    Wiebe I.: Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Technik Berlin (1970)

  18. 18.

    Van Gerpen J.: A two stroke diesel engine simulation program. NASA Contractor Report 185155 Iowa State University (1990)

  19. 19.

    Norman T.J.: a performance model of a spark ignition wankel engine including the effects of crevice volumes, gas leakage and heat transfer. In: Mechanical Engineering Master—Theses Massachusetts Institute of Technology (1983)

  20. 20.

    Rakopoulos, C.D., Kyritsis, D.C.: Development and validation of a comprehensive two-zone model for combustion and emissions formation in a DI diesel engine. Int. J. Energy Res. 27, 1221–1249 (2003)

    Article  Google Scholar 

  21. 21.

    Andersson, P.: Model for predicting the NOx exhaust pollutants in a diesel engine. In: Master Theses, Lund, Sweden (1989)

  22. 22.

    Cevik, M., Rebbert, M., Maassen, F.: Weight and friction optimized cranktrain design supported by coupled CAE tools. SAE Technical Paper 2009-01-1452. (2009)

  23. 23.

    Civinskas, K.C.,Kraft, G.A.: Preliminary evaluation of a turbine/rotary combustion compound engine for a subsonic transport aircraft. NASA technical memorandum TM X-71906 US Army Air Mobility R&D Laboratory Cleveland, Ohio (1976)

  24. 24.

    Mollenhauer, K., Tschöke, H.: Handbuch Dieselmotoren. Springer, Berlin (2007)

    Google Scholar 

  25. 25.

    Polifke, W., Kopitz, J.: Wärmeübertragung—Grundlagen, analytische und numerische Methoden, 2nd edn. Pearson-Verlag Hallbergmoos, Germany (2009)

    Google Scholar 

  26. 26.

    Seitz, A.: Advanced methods for propulsion system integration in aircraft conceptual design. In: Dissertation Technical University Munich, Germany (2012)

  27. 27.

    Grieb H.: Projektierung von Turboflugtriebwerken. Birkhäuser Verlag Basel-Boston-Berlin (2004)

  28. 28.

    Van Basshuysen, R.: Handbuch Verbrennungsmotoren, 5th edn. Vieweg + Teubner Verlag Wiesbaden, Germany (2010)

    Google Scholar 

  29. 29.

    Kraemer, Jungbluth: Bau und Berechnung von Verbrennungsmotoren, 5th edn. Springer, Berlin (1983)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Nickl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nickl, M., Kaiser, S. Evaluation of piston engine modes and configurations in composite cycle engine architectures. CEAS Aeronaut J 11, 391–400 (2020). https://doi.org/10.1007/s13272-019-00399-w

Download citation

Keywords

  • Composite cycle
  • Piston engine
  • Rotary engine
  • Aircraft propulsion system