Skip to main content
Log in

Scale-resolving simulations using a lattice Boltzmann-based approach

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper summarizes the fundamental concepts behind the lattice Boltzmann approach for scale-resolving numerical flow simulations with a brief description of the solver algorithms and models in the lattice Boltzmann-based code PowerFLOW. The focus is put on representative simulation examples including a direct numerical simulation of a channel and the NACA0012 airfoil at a chord Reynolds number of 657,000 resolving all the turbulent scales and several fundamental cases increasing in flow and geometric complexity demonstrating the hybrid turbulence approach which is resolving only the large coherent turbulent structures, while smaller turbulent flow structures are modeled. Simulation results of a simple shear layer flow, a smooth body separation on the NASA Hump and iced airfoils are documented. The results provide a good overview of the high accuracy achieved for transitioning and separated turbulent flow situations and the mechanisms initiating the switch from mainly modeled to mainly resolved turbulent flow structures. Combined with the high efficiency of the numerical method, developments following the described strategy are expected to evolve further and allow additional industrial deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended boltzmann kinetic equation for turbulent flows. Science 301, 633–636 (2003)

    Article  Google Scholar 

  2. Shan, X., Yuan, X.-F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

    Article  MathSciNet  Google Scholar 

  3. Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by lattice Boltzmann method. J. Fluid Mech. 519, 273–300 (2004)

    Article  Google Scholar 

  4. Sanjosé, M., Méon, C., Masson, V., Moreau, S.: Direct numerical simulation of acoustic reduction using a serrated trailing-edge on an isolated airfoil. AIAA Paper 2014–2324 (2014)

  5. Fares, E.: Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. J. Comput. Fluids 35, 8–9, 940–950 (2006)

    Article  Google Scholar 

  6. König, B., Fares, E., Murayama, M., Ito, Y., Yokokawa, Y., Yamamoto, K., Ishikawa, K.: Lattice-Boltzmann simulations of the JAXA JSM high-lift configuration. AIAA Paper 2016–3721 (2016)

  7. Khorrami, M., Fares, E., Casalino, D.: Towards full aircraft airframe noise prediction: lattice Boltzmann simulations. AIAA Paper 2014–2481 (2014)

  8. Fares, E., Casalino, D., Khorrami, M.: Evaluation of airframe noise reduction concepts via simulations using a lattice Boltzmann approach. AIAA Paper 2015–2988 (2015)

  9. Fares, E., Duda, B., Khorrami, M.: Airframe noise prediction of a full aircraft in model and full scale using a lattice Boltzmann approach. AIAA Paper: 2016–2707

  10. Chen, H.: Volumetric formulation of the lattice-boltzmann method for fluid dynamics: basic concept. Phys. Rev. E 58(3), 3955–3963 (1998)

    Article  Google Scholar 

  11. Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45(8), 5339–5342 (1992)

    Article  Google Scholar 

  12. Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, London (1990)

    MATH  Google Scholar 

  13. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models—An Introduction. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Qian, Y., d’Humères, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479 (1992)

    Article  Google Scholar 

  15. Boltzmann, L.: Weitere Studien über das Wärmegleochgewicht unter Gasmolekülen. Sitz. Ber. Akad. Wiss. Wien II 66, 275 (1872)

    MATH  Google Scholar 

  16. Chen, H., Orszag, S., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluid and turbulence. J. Fluid Mech. 519, 301–314 (2004)

    Article  MathSciNet  Google Scholar 

  17. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511 (1954)

    Article  Google Scholar 

  18. Marié, S., Ricot, D., Sagaut, P.: Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228, 1056–1070 (2009)

    Article  MathSciNet  Google Scholar 

  19. Brès, G.A., Pérot, F., Freed, D.: Properties of the lattice-Boltzmann method for acoustics. AIAA Paper 2009–3395 (2009)

  20. Lockard, D.: Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop. AIAA Paper 2011-0353 (2011)

  21. Slotnick, J., et al.: CFD vision 2030 study: a path to revolutionary computational aerosciences. NASA/CR-2014-218178 (2014)

  22. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES, 1st AFOSR international conference, Aug 4–8. On DNS/LES, Greyden Press, Columbus (1997)

  23. Menter, F.R., Kuntz, M., Bender, R.A.: Scale adaptive simulation model for turbulent flow predictions [Conference]//AIAA 2003-0767 (2003)

  24. Spalart, P.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

  25. Larsson, et al.: The prospect of using LES and DES in engineering design, and the research required to get there. R. Soc. Philos. Trans. A 372, 20130329 (2014)

    Article  Google Scholar 

  26. Noelting, S., Fares, E.: The lattice-Boltzmann method: an alternative to LES for complex aerodynamic and aeroacoustic simulations in the aerospace industry. SAE Technical Paper 2015-01-2575 (2015)

  27. Chen, H., Teixeira, C., Molvig, K.: Digital physics approach to computational fluid dynamics: some basic theoretical features. Int. J. Mod. Phys. C 8(4), 675–684 (1997)

    Article  Google Scholar 

  28. Zhang, R., Shan, X., Chen, H.: Efficient kinetic method for fluid simulation beyond the Navier–Stokes equation. Phys. Rev. E Am. Phys. Soci. 74, 046703 (2006)

    Article  Google Scholar 

  29. Fan, H., Zhang, R., Chen, H.: Extended volumetric scheme for lattice Boltzmann models. Phys. Rev. E 73, 066708 (2006)

    Article  Google Scholar 

  30. Chen, H., Shan, X.: Fundamental conditions for N-th-order accurate lattice Boltzmann models. Phys. D 237, 14–17, 2003–2008 (2008)

    Article  MathSciNet  Google Scholar 

  31. Chen, H., Zhang, R., Gopalakrishnan, P.: Lattice Boltzmann collision operators enforcing isotropy and Galilean invariance. Patent US9576087B2, priority date 7/24/2013 and grant date 2/21/2017

  32. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A 360, 437–451 (2002)

    Article  MathSciNet  Google Scholar 

  33. Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228(12), 4478–4490 (2009)

    Article  Google Scholar 

  34. Manoha, E., Caruelle, B.: Summary of the LAGOON solutions from the benchmark problems for Airframe noise computations-III Workshop. AIAA Paper 2015–2846 (2015)

  35. Choudhari, M., Lockard, D.: Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop. AIAA Paper 2015–2844 (2015)

  36. Sanjosé M.S., Moreau, S., Pérot, F.: Direct self-noise simulation of the installed CD airfoil. AIAA Paper 2011–2716 (2011)

  37. Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids 23, 10, (2011)

    Article  Google Scholar 

  38. Malaspinas, O., Sagaut, P.: Consistent subgrid scale modelling for lattice Boltzmann methods. J. Fluid Mech. 700, 514–542 (2012)

    Article  MathSciNet  Google Scholar 

  39. Yakhot, V., Orszag, S.: Renormalization group analysis of turbulence. J. Sci. Comput. 1, 1722 (1986)

    Article  MathSciNet  Google Scholar 

  40. Chen, H., Teixeira, C., Molvig, K.: Realization of fluid boundary conditions via discrete Boltzmann dynamics. Int. J. Mod. Phys. C 9(8), 1281–1292 (1998)

    Article  Google Scholar 

  41. Anagnost, A., Alajbegovic, A., Chen, H., Hill, D., Teixeira, C., Molvig, K.: Digital physics analysis of the morel body in ground proximity. SAE Paper 970139 (1997)

  42. Noelting, S., Fares, E., Keating, A.: Simulations of the trapwing case with PowerFLOW. HiLiftPW-1 Workshop.-Chicago (2010)

  43. König, B., Fares, E., Noelting, S. Lattice-Boltzmann flow simulations for the HiLiftPW-2. AIAA Paper 2014-0911 (2014)

  44. Marusic, I., Monty, J.P., Hultmark, M., Smits, A.J.: On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3-1–R3-11 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Larsson, J., Kawai, S.: Wall-modeling in large eddy simulation: length scales, grid resolution and accuracy. Annual Research Briefs, Center for Turbulence Research (2010)

  46. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  Google Scholar 

  47. Moser, R.D., Kim, J., Mansour, N.N.: DNS of turbulent channel flow up to Re_tau = 590. Phys. Fluids 11, 943–945 (1998)

    Article  Google Scholar 

  48. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. A264(1151), 321–342 (1969)

    Article  Google Scholar 

  49. Ribeiro, A.F.P., Casalino, D., Fares, E., Choudhari, M.: NACA 0012 DNS with PowerFLOW. contribution to category 1: trailing edge noise. AAC Conference Lyon, June 2016 (2016)

  50. BANC-IV workshop. https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCIV.htm. Accessed 26 Aug 2016

  51. Ribeiro, A.F.P., Casalino, D., Fares, E., Choudhari, M.: Direct numerical simulation of an airfoil with sand grain roughness on the leading edge. NASA/TM-2016-219363 (2016)

  52. Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise and prediction. NASA Ref. Public. 1218, (1989)

  53. Go4Hybrid Project. http://go4hybrid.mace.manchester.ac.uk/go4hybrid/bin/view/Main/WebHome. Accessed 26 Aug 2016

  54. Duda, B., Fares, E., Kotapati, R.: Application of the lattice Boltzmann method to shear layer flows. AIAA Paper 2015-1970 (2015)

  55. Turbulence Modeling Resource. http://turbmodels.larc.nasa.gov/nasa40percent.html. Accessed 26 Aug 2016

  56. Duda, B., Fares, E.: Application of a lattice-Boltzmann method to the separated flow behind the NASA hump. AIAA Paper 2016-1836 (2016)

  57. Koenig, B., Fares, E., Noelting, S., Jammalamadaka, A., Li, Y.: Investigation of the NACA 4412 trailing edge separation using a lattice-Botzmann approach. AIAA Paper 2014–3324 (2014)

  58. Shur, M., Spalart, P., Strelets, M., Travin, A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  59. Koenig, B., Fares, E., Broeren, A.P.: Lattice-Boltzmann analysis of three-dimensional ice shapes on the NACA 23012 airfoil. SAE Paper 2015-01-2084 (2015)

  60. Ribeiro, A.F.P., Singh, D., Konig, B., Fares, E.: On the stall characteristics of iced wings. AIAA Paper 2017-1426 (2017)

Download references

Acknowledgements

The authors greatly appreciate the contributors of all the simulations and developments reported in this paper. Our gratitude goes especially to Meelan Choudhari of NASA Langley for his contributions on both DNS cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fares, E., Duda, B., Ribeiro, A.F.P. et al. Scale-resolving simulations using a lattice Boltzmann-based approach. CEAS Aeronaut J 9, 721–733 (2018). https://doi.org/10.1007/s13272-018-0317-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0317-0

Keywords

Navigation