CEAS Aeronautical Journal

, Volume 9, Issue 3, pp 445–460 | Cite as

Dynamic maneuver loads calculations for a sailplane and comparison with flight test

  • Arne Voß
  • Per Ohme
Original Paper


This work presents the results of dynamic maneuver simulations of a sailplane and the comparison with flight test data. The goal of the effort is to extend and validate an in-house toolbox used for loads analysis of free-flying flexible aircraft in the time domain. The underlying aerodynamic theories are the steady vortex lattice and the doublet lattice method with a rational function approximation for the unsteady simulations in the time domain. The structural model comprises a beam model to represent the stiffness properties and a lumped mass model, both are developed using preliminary design methods. Steady aeroelastic trim simulations are performed and used as initial condition for the time simulation of the unsteady maneuvers in which the pilot’s commands, which were recorded during flight test, are prescribed at the control surfaces. Two vertical maneuvers with elevator excitation, two rolling maneuvers with aileron excitation and three aileron sweeps are simulated. The validation focuses on the comparison of interesting quantities such as section loads, structural accelerations and the rigid body motion. Good agreement between simulation and flight test data is demonstrated for all three kinds of maneuvers, confirming the quality of the models developed by the preliminary design methods.


Dynamic maneuver loads Flight test Sailplane Preliminary design Aeroelasticity Structural dynamics 



The authors would like to thank their colleague Gabriel P. Chiozzotto for providing the aeroelastic models and for valuable discussions.


  1. 1.
    Albano, E., Rodden, W.P.: A doublet lattice method for calculating lift distributions on oscillation surfaces in subsonic flows. In: AIAA 6th Aerospace Sciences Meeting. New York (1968)Google Scholar
  2. 2.
    Bisplinghoff, R., Ashley, H.: Principles of Aeroelasticity. Dover Books on Aeronautical Engineering. Dover Publications (2002). 00892 Unabridged, corrected republication of the edition published by Wiley, New York (1962)Google Scholar
  3. 3.
    Blair, M.: A Compilation of the Mathematics Leading to the Doublet Lattice Method. Technical Report WL-TR-92-3028, Airforce Wright Laboratory, Ohio (1992)Google Scholar
  4. 4.
    Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Buttrill, C., Zeiler, T., Arbuckle, P.: Nonlinear simulation of a flexible aircraft in maneuvering flight. Am. Inst. Aeronaut. Astronaut. (1987).
  6. 6.
    Claverias, S., Cerezo, J., Torralba, M., Reyes, M., Climent, H., Karpel, M.: Wake vortex encounter loads numerical simulation. In: International Forum for Aeroelasticity and Structural Dynamics, Bristol, United Kingdom (2013)Google Scholar
  7. 7.
    Climent, H., Lindenau, O., Claverias, S., Viana, J., Oliver, M., Benitez, L., Pfeifer, D., Jenaro-Rabadan, G.: Flight test validation of wake vortex encounter loads. In: International Forum for Aeroelasticity and Structural Dynamics, Bristol, United Kingdom (2013)Google Scholar
  8. 8.
    Cumnuantip, S., Kier, T., Pinho Chiozzotto, G.: Methods for the quantification of aircraft loads in DLR-Project iLOADS. In: Deutscher Luft- Und Raumfahrtkongress (2016)Google Scholar
  9. 9.
    DLR’s research aircraft. Accessed 17 July 2017
  10. 10.
  11. 11.
    Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Drela, M.: XFOIL Subsonic Airfoil Development System. Accessed 08 Aug 2017
  13. 13.
    Eller, D.: On an Efficient Method for Time-Domain Computational Aeroelasticity. Dissertation, KTH Royal Institute of Technology, Stockholm (2005)Google Scholar
  14. 14.
    Eller, D., Ringertz, U.: Aeroelastic Simulations of a Sailplane. Tech. rep, Department of Aeronautical and Vehicle Engineering, KTH (2005)Google Scholar
  15. 15.
    Garbow, B.S., Hillstrom, K.E., More, J.J.: Minpack/hybrd.html. (1980). Accessed 18 July 2017
  16. 16.
    Gupta, K.K., Brenner, M.J., Voelker, L.S.: Developement of an Integrated Aeroservoelastic Analysis Program and Correlation With Test Data. Technical Paper NASA Technical Paper 3120, Dryden Flight Research Facility, Edwards, California (1991)Google Scholar
  17. 17.
    Handojo, V., Klimmek, T.: Böenlastanalyse der vorwärts gepfeilten ALLEGRA-Konfiguration. In: Deutscher Luft- Und Raumfahrtkongress, Rostock (2015)Google Scholar
  18. 18.
    Hedman, S.G.: Vortex Lattice Method for Calculation of Quasi Steady State Loadings on Thin Elastic Wings in Subsonic Flow. Tech. Rep. FFA Report 105, FFA Flygtekniska Försöksanstalten, Stockholm, Sweden (1966)Google Scholar
  19. 19.
    Karpel, M., Strul, E.: Minimum-state unsteady aerodynamic approximations with flexible constraints. J. Aircr. 33(6), 1190–1196 (1996). CrossRefGoogle Scholar
  20. 20.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics: From Wing Theory to Panel Methods, p. 00002. McGraw-Hill, New York (1991)Google Scholar
  21. 21.
    Kier, T., Looye, G.: Unifying manoeuvre and gust loads analysis models (2009)Google Scholar
  22. 22.
    Klimmek, T.: Parametric set-up of a structural model for FERMAT configuration for aeroelastic and loads analysis. J. Aeroelastic. Struct. Dyn. 2, 31–49 (2014). Google Scholar
  23. 23.
    Klimmek, T., Ohme, P., Ciampa, Handojo, V.: Aircraft loads—an important task from pre-design to loads flight testing. In: Deutscher Luft- Und Raumfahrtkongress, Braunschweig (2016)Google Scholar
  24. 24.
    Kotikalpudi, A.: Body Freedom Flutter (BFF) Doublet Lattice Method (DLM). (2014)
  25. 25.
    Kotikalpudi, A., Pfifer, H., Balas, G.J.: Unsteady aerodynamics modeling for a flexible unmanned air vehicle. In: AIAA Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics, Dallas, Texas (2015).
  26. 26.
    Krüger, W., Klimmek, T., Liepelt, R., Schmidt, H., Waitz, S., Cumnuantip, S.: Design and aeroelastic assessment of a forward-swept wing aircraft. CEAS Aeronaut. J. 5(4), 419–433 (2014). CrossRefGoogle Scholar
  27. 27.
    Krüger, W., Handojo, V., Klimmek, T.: Flight loads analysis and measurements of external stores on an atmospheric research aircraft. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Grapevine, Texas (2017)Google Scholar
  28. 28.
    Krüger, W., Klimmek, T.: Definition of a comprehensive loads process in the DLR project iLOADS. In: Deutscher Luft- und Raumfahrtkongress, Braunschweig, Deutschland (2016)Google Scholar
  29. 29.
    Liersch, C.M., Huber, K.C.: Conceptual design and aerodynamic analyses of a generic UCAV configuration. In: American Institute of Aeronautics and Astronautics (ed.) 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA (2014).
  30. 30.
    Montel, M., Thielecke, F.: Validation of a nonlinear observer implementation for empennage loads estimation. CEAS Aeronaut. J. 7(2), 299–313 (2016). CrossRefGoogle Scholar
  31. 31.
    Nicolai, L.M., Carichner, G.E.: Fundamentals of Aircraft and Airship Design: Volume I Aircraft Design. American Institute of Aeronautics and Astronautics, Reston (2010). CrossRefGoogle Scholar
  32. 32.
    Ohme, P., Raab, C., Preisighe Viana, M.V.: Lastenmessung im Flugversuch und Entwicklung Echtzeitfähiger Simulationsmodelle. In: Deutscher Kongress Für Luft- Und Raumfahrt, Braunschweig (2016)Google Scholar
  33. 33.
    Palacios, R., Climent, H., Karlsson, A., Winzell, B.: Assessment of strategies for correcting linear unsteady aerodynamics using CFD or test results. In: International Forum on Aeroelasticity and Structural Dynamics (2001)Google Scholar
  34. 34.
    Pinho Chiozzotto, G.: Wing weight estimation in conceptual design: a method for strut-braced wings considering static aeroelastic effects. CEAS Aeronaut. J. 7(3), 499–519 (2016). CrossRefGoogle Scholar
  35. 35.
    Powell, M.J.: A hybrid method for nonlinear equations. Numer. Methods Nonlinear Algeb. Equ. 7, 87–114 (1970)MathSciNetGoogle Scholar
  36. 36.
    Preisighe Viana, M.V.: Sensor calibration for calculation of loads on a flexible aircraft. In: 16th International Forum on Aeroelasticity and Structural Dynamics, Saint Petersburg, Russia (2015)Google Scholar
  37. 37.
    Preisighe Viana, M.V.: Multipoint Model for Flexible Aircraft Loads Monitoring in Real Time. Dissertation, TU Braunschweig, Braunschweig, Deutschland (2016)Google Scholar
  38. 38.
    Preisighe Viana, M.V.: Time-domain system identification of rigid-body multipoint loads model. In: AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, Washington, DC (2016).
  39. 39.
    Ramsey, H.D., Lewolt, J.G.: Design maneuver loads for an airplane with an active control system. In: 20th Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, St. Louis, USA (1979)Google Scholar
  40. 40.
    Reschke, C.: Integrated Flight Loads Modelling and Analysis for Flexible Transport Aircraft. Dissertation, Universität Stuttgart, Oberpfaffenhofen, Germany (2006)Google Scholar
  41. 41.
    Rodden, W., MacNeal, Harder, R., McLean, Bellinger, D.: MSC/Nastran Version 68 Aeroelastic Analysis User’s Guide. MSC. Software Corporation (01/03/10)Google Scholar
  42. 42.
    Rodden, W.P., Giesing, J.P., Kálmán, T.P.: New developments and application of the subsonic doublet-lattice method for nonplanar configurations. In: AGARD-CP-80-PT-2-Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces (Part 2) (1971)Google Scholar
  43. 43.
    Roger, K.L.: Airplane math modeling methods for active control design. In: T.B. Company (ed.) AGARD-CP-228 (1977)Google Scholar
  44. 44.
    Schlichting, H., Truckenbrodt, E.: Aerodynamik Des Flugzeuges: Aerodynamik Des Tragflügels (Teil 2). Der Flügel-Rumpf-Anordnung Und Leitwerke, zweite neubearbeitete auflage edn. Springer, Des Rumpfes (1969)Google Scholar
  45. 45.
    Schrenk, O.: Ein einfaches Näherungsverfahren zur Ermittlung von Auftriebsverteilungen längs der Tragflügelspannweite. Tech. rep, Aerodynamische Versuchsanstalt (AVA), Göttingen, Germany (1940)Google Scholar
  46. 46.
    Sinske, J., Govers, Y., Handojo, V., Krüger, W.R.: HALO Flugtest mit instrumentierten Aussenlasten fuer Aeroelastik- und Lastmessungen im DLR Projekt iLOADS. In: Deutscher Luft- Und Raumfahrtkongress, Braunschweig (2016)Google Scholar
  47. 47.
    Skopinski, T.H., Aiken, W.S., Huston, W.B.: Calibration of Strain-Gage Installations in Aircraft Structures for the Measurement of Flight Loads. Technical Report NACA-TR-1178, National Advisory Committee for Aeronautics. Langley Aeronautical Lab, Langley Field, VA (1954)Google Scholar
  48. 48.
    Stauffer, W.A., Hoblit, F.M.: Dynamic gust, landing, and taxi loads determination in the design of the L-1011. J. Aircr. 10(8), 459–467 (1973). CrossRefGoogle Scholar
  49. 49.
    Stauffer, W., Lewolt, J., Hoblit, F.: Application of advanced methods to the determination of design loads of the Lockheed L-1011 TriStar. Am. Inst. Aeronaut. Astronaut. (1972).
  50. 50.
    The Scipy community: Scipy.integrate.ode. Accessed 18 July 2017
  51. 51.
    The Scipy community: Scipy.optimize.fsolve. Accessed 18 July 2017
  52. 52.
    Voß, A., Klimmek, T.: Design and sizing of a parametric structural model for a UCAV configuration for loads and aeroelastic analysis. CEAS Aeronaut. J. 8(1), 67–77 (2017). CrossRefGoogle Scholar
  53. 53.
    Voß, A., Klimmek, T.: Maneuver loads calculation with enhanced aerodynamics for a UCAV configuration. In: AIAA Modeling and Simulation Technologies Conference, American Institute of Aeronautics and Astronautics, Washington, DC (2016).
  54. 54.
    Voß, A., Pinho Chiozzotto, G., Ohme, P.: Dynamic maneuver loads calculation for a sailplane and comparison with flight test. In: IFASD 2017-17th International Forum on Aeroelasticity and Structural Dynamics, Como, Italy (2017)Google Scholar
  55. 55.
    Waszak, M.R., Schmidt, D.K.: Flight dynamics of aeroelastic vehicles. J. Aircr. 25(6), 563–571 (1988). CrossRefGoogle Scholar
  56. 56.
    Waszak, M., Buttrill, C., Schmidt, D.: Modeling and Model Simplification of Aeroelastic Vehicles: An Overview. Tech. Rep. NASA Technical Memorandum 107691, NASA Langley Research Center (1992)Google Scholar
  57. 57.
    ZONA Technology Inc.: ZAERO Theoretical Manual, vol. Version 9.0. Scottsdale, Arizona (2014)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Authors and Affiliations

  1. 1.Institute of AeroelasticityDLR - German Aerospace CenterGöttingenGermany
  2. 2.Institute of Flight SystemsDLR - German Aerospace CenterBraunschweigGermany

Personalised recommendations