Skip to main content
Log in

Numerical investigation of blade-tip-vortex dynamics

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2018

This article has been updated

Abstract

Numerical computations on a finite wing are carried out using DLR’s finite-volume solver TAU. The tip-vortex characteristics during static stall and deep dynamic stall are analyzed and compared to particle image velocimetry (PIV) measurements carried out in the side wind facility Göttingen. Computational fluid dynamics (CFD) and experiment are in good agreement, especially for sections close to the blade tip. Too large dissipation within the numerical computations leads to larger vortex size than in the experiment. The dissipation effect increases with larger distances from the wing. The analysis shows that the numerical method is able to capture the complex vortex structures shed from the wing and helps understanding the source of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 24 April 2018

    The original version of this article unfortunately contained mistakes. Due to typesetting errors several expressions were not displayed correctly.

Abbreviations

c :

Chord length, m

\(C_\text{l}\) :

Sectional lift coefficient

\(C_\text{L}\) :

Global lift coefficient

\(C_\text{D}\) :

Global drag coefficient

\(C_\text{M}\) :

Global pitching moment coefficient

\(C_\text{p}\) :

Local pressure coefficient

f :

Frequency, 1/s

k :

Reduced frequency

M :

Freestream Mach number

Re :

Reynolds number based on c

r :

Radial coordinate, m

S :

Span, m

\(U_\infty\) :

Freestream velocity, m/s

u :

Velocity component along x, m/s

\(u_\theta\) :

Tangential velocity component (swirl velocity), m/s

v :

Velocity component along y, m/s

w :

Velocity component along z, m/s

x :

Cartesian coordinate in streamwise direction, m

y :

Cartesian coordinate in spanwise direction, m

\(y^+\) :

Dimensionless wall distance

z :

Cartesian coordinate perpendicular to x and y, m

\(\alpha\) :

Angle of attack, deg

\(\Gamma\) :

Circulation, m\(^2\)/s

\(\lambda _{2}\) :

\(\lambda _{2}\) vortex criterion

\(\omega _{\text{x}}\) :

Streamwise vorticity, 1/s

\(\uparrow\) :

On the upstroke

\(\downarrow\) :

On the downstroke

0.2:

Circulation at a radius of \(r=0.2\) chord lengths

core:

Vortex core radius

r:

Wing root

References

  1. Richez, F., Ortun, B.: Numerical investigation of the flow separation on a helicopter rotor in dynamic stall configuration. In: 42nd European rotorcraft forum. Lille, France (2016)

  2. Widnall, S.: Helicopter noise due to Blade–Vortex interaction. J. Acoust. Soc. Am. 50(1B), 354–365 (1971). https://doi.org/10.1121/1.1912640

    Article  Google Scholar 

  3. Yu, Y.H.: Rotor Blade–Vortex interaction noise. Progress Aerosp. Sci. 36(2), 97–115 (2000). https://doi.org/10.1016/S0376-0421(99)00012-3

    Article  MathSciNet  Google Scholar 

  4. McCroskey, W.J., McAlister, K.W., Carr, L.W., Pucci, S.L., Lambert, O., Indergrand, R.F.: Dynamic stall on advanced airfoil sections. J. Am. Helicopter Soc. 26(3), 40–50 (1981). https://doi.org/10.4050/JAHS.26.40

    Article  Google Scholar 

  5. Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25(1), 6–17 (1988). https://doi.org/10.2514/3.45534

    Article  MathSciNet  Google Scholar 

  6. Ramaprian, B.R., Zheng, Y.: Near field of the tip Vortex behind an oscillating rectangular wing. AIAA J. 36(7), 1263–1269 (1998). https://doi.org/10.2514/2.508

    Article  Google Scholar 

  7. Chang, J.W., Park, S.O.: Measurements in the tip Vortex roll-up region of an oscillating wing. AIAA J. 38(6), 1092–1095 (2000). https://doi.org/10.2514/2.1072

    Article  Google Scholar 

  8. Birch, D., Lee, T.: Tip Vortex behind a wing undergoing deep-stall oscillation. AIAA J. 43(10), 2081–2092 (2005). https://doi.org/10.2514/1.13139

    Article  Google Scholar 

  9. Birch, D., Lee, T.: Investigation of the near-field tip Vortex behind an oscillating wing. J. Fluid Mech. 544, 201–241 (2005). https://doi.org/10.1017/S0022112005006804

    Article  MATH  Google Scholar 

  10. Mohamed, K., Nadarajah, S., Paraschivoiu, M.: Detached-Eddy Simulation of a wing tip Vortex at dynamic stall conditions. J. Aircr. 46(4), 1302–1313 (2009). https://doi.org/10.2514/1.40685

    Article  Google Scholar 

  11. Richez, F., Le Pape, A., Costes, M.: Zonal detached-Eddy simulation of separated flow around a finite-span wing. AIAA J. 53(11), 3157–3166 (2015). https://doi.org/10.2514/1.J053636

    Article  Google Scholar 

  12. Costes, M., Richez, F., Le Pape, A., Gavériaux, R.: Numerical investigation of three-dimensional effects during dynamic stall. Aerosp. Sci. Technol. (2015). https://doi.org/10.1016/j.ast.2015.09.025

  13. Kaufmann, K., Costes, M., Richez, F., Gardner, A. D., & Le Pape, A., “Numerical Investigation of Three-Dimensional Static and Dynamic Stall on a Finite Wing. J. Am. Helicopter Soc. (2015). https://doi.org/10.4050/JAHS.60.032004

  14. Merz, C.B., Wolf, C.C., Richter, K., Kaufmann, K., Raffel, M.: Experimental investigation of dynamic stall on a pitching rotor blade tip. In: New results in numerical and experimental fluid mechanics X, notes on numerical fluid mechanics and multidisciplinary design 132, 339–348 (2016). https://doi.org/10.1007/978-3-319-27279-5_30

  15. Merz, C.B., Wolf, C.C., Richter, K., Kaufmann, K., Mielke, A., Raffel, M.: Spanwise differences in static and dynamic stall on a pitching rotor blade tip model. J. Am. Helicopter Soc. 62(1), 1–11 (2017). https://doi.org/10.4050/JAHS.62.012002

    Article  Google Scholar 

  16. Wolf, C.C., Merz, C.B., Richter, K., Raffel, M.: Tip-Vortex dynamics of a pitching rotor blade tip model. AIAA J. 54(10), 2947–2960 (2016). https://doi.org/10.2514/1.J054656

    Article  Google Scholar 

  17. Schneider, O. van der Wall, B. G. & Pengel, K.: HART II blade motion measured by stereo pattern recognition (SPR). In: 59th American helicopter society forum, Phoenix, USA, May 6–8, (2003)

  18. Kaufmann, K., Merz, C.B., Gardner, A. D.: Dynamic stall simulations on a pitching finite wing. J. Aircr. (2017). https://doi.org/10.2514/1.C034020 (accepted for publication)

  19. Menter, F.R.: Zonal two equation k-\(\omega\) turbulence models for aerodynamic flows, AIAA Paper 93-2906. In: 23rd AIAA fluid dynamics, plasma dynamics and lasers conference, Orlando, USA, July 6–9, (1993). https://doi.org/10.2514/6.1993-2906

  20. Richter, K., Le Pape, A., Knopp, T., Costes, M., Gleize, V., Gardner, A.D.: Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. J. Am. Helicopter Soc. 56(4), 1–12 (2011). https://doi.org/10.4050/JAHS.56.042007

    Article  Google Scholar 

  21. Goerttler, A., Braukmann, J.N., Schwermer, T., Gardner, A.D., & Raffel, M.: Tip-Vortex investigation on a rotating and pitching rotor blade. In: 43rd European rotorcraft forum, Milan, Italy, September 12–15 (2017)

  22. Jeong, J., Hussain, F.: On the identification of a Vortex. J. Fluid Mech. 285, 69–94 (1995). https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  23. Löwe, J., Probst, A., Knopp, T., Kessler, R.: Low-dissipation low-dispersion second-order scheme for unstructured finite volume flow solvers. AIAA J. 54(10), 2961–2971 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre (LRZ, www.lrz.de). Funding of the DLR projects STELAR and FASTrescue is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Kaufmann.

Additional information

The original version of this article was revised: Due to typesetting errors several expressions were not displayed correctly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufmann, K., Wolf, C.C., Merz, C.B. et al. Numerical investigation of blade-tip-vortex dynamics. CEAS Aeronaut J 9, 373–386 (2018). https://doi.org/10.1007/s13272-018-0287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0287-2

Keywords

Navigation