A new perspective on biogeographic barrier in the flathead grey mullet (Pisces: Mugilidae) from the northwest Pacific

Abstract

Background

The flathead grey mullet, Mugil cephalus has a global distribution in tropical, subtropical and temperate seas worldwide. Previous studies proposed that globally distributed M. cephalus comprises at least 14 different lineages, and divided into two or three groups in the northwest Pacific. Therefore, we hypothesized that there may exist at least two lineages in Korea.

Objective

The aim of this study was to determine the number of lineages of flathead grey mullet in Korea, and detail their biogeographic boundaries, and taxonomic implications using various molecular markers.

Methods

Two partial mitochondrial DNA (mtDNA) gene sequences (COI and 16S rRNA) and nine microsatellite loci were analyzed in 260 individuals from ten locations.

Results

Phylogenetic trees from two partial mtDNA gene sequences revealed two distinct lineages of flathead grey mullet (P distance = 0.016–0.021). Lineage 1 (L1) consisted of mullets from all locations except for the Pacific coasts of Japan, while lineage 2 (L2) consisted of mullets from the Jeju Island, Shanghai, and the Pacific coasts of Japan. The STRUCTURE analyses of msat data also revealed two distinct groups.

Conclusion

This study was the first to reveal the coexistence of two lineages of flathead grey mullet in Korea. L2 was confined to the Jeju Island in Korea, implying a biogeographic boundary between the two lineages. The allopatric distribution and genetic heterogeneity between lineages may be affected by an ancient geographic isolation during the glacial period and maintained due to adaptation to oceanic characteristics. Collectively, the two lineages may be comprised of distinct species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andree K, Axtner J, Bagley MJ et al (2010) Permanent genetic resources added to molecular ecology resources database 1 April 2010–31 May 2010. Mol Ecol Resour 10:1098–1105. https://doi.org/10.1111/j.1755-0998.2010.02898.x

    CAS  Article  PubMed  Google Scholar 

  2. Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media, London

    Google Scholar 

  3. Bae SE, Kim EM, Park JY, Kim JK (2020) Population genetic structure of the grass puffer (Tetraodontiformes: Tetraodontidae) in the northwestern Pacific revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biodivers 50:1–13. https://doi.org/10.1007/s12526-020-01042-2

    Article  Google Scholar 

  4. Bekkevold D, André C, Dahlgren TG et al (2005) Environmental correlates of population differentiation in Atlantic herring. Evolution 59:2656–2668. https://doi.org/10.1554/05-183.1ga

    Article  PubMed  Google Scholar 

  5. Ceballos SG, Lessa EP, Victorio MF, Fernández DA (2012) Phylogeography of the sub-Antarctic notothenioid fish Eleginops maclovinus: evidence of population expansion. Mar Biol 159:499–505. https://doi.org/10.1007/s00227-011-1830-4

    Article  Google Scholar 

  6. Chen CA, Sheu DD (2006) Does the Taiwan warm current originate in the Taiwan Strait in wintertime? J Geophys Res Oceans 111:C04005. https://doi.org/10.1029/2005JC003281

    Article  Google Scholar 

  7. Chen CA, Wang S (2006) A salinity front in the southern East China Sea separating the Chinese coastal and Taiwan Strait waters from Kuroshio waters. Cont Shelf Res 26:1636–1653. https://doi.org/10.1016/j.csr.2006.05.003

    Article  Google Scholar 

  8. Cheng J, Wang Z, Song N et al (2019) Phylogeographic analysis of the genus Platycephalus along the coastline of the northwestern Pacific inferred by mitochondrial DNA. BMC Evol Biol 19:159. https://doi.org/10.1186/s12862-019-1477-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chyung M (1977) The fishes of Korea. Il Ji Sa, Busan

    Google Scholar 

  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    CAS  Article  Google Scholar 

  11. D’Aloia CC, Bogdanowicz SM, Harrison RG, Buston PM (2014) Seascape continuity plays an important role in determining patterns of spatial genetic structure in a coral reef fish. Mol Ecol 23:2902–2913. https://doi.org/10.1111/mec.12782

    CAS  Article  PubMed  Google Scholar 

  12. Durand J, Borsa P (2015) Mitochondrial phylogeny of grey mullets (Acanthopterygii: Mugilidae) suggests high proportion of cryptic species. C R Biol 338:266–277. https://doi.org/10.1016/j.crvi.2015.01.007

    Article  PubMed  Google Scholar 

  13. Durand J, Shen K, Chen W et al (2012) Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy. Mol Phylogenet Evol 64:73–92. https://doi.org/10.1016/j.ympev.2012.03.006

    Article  PubMed  Google Scholar 

  14. Durand J, Hubert N, Shen KN, Borsa P (2017) DNA barcoding grey mullets. Rev Fish Biol Fish 27:233–243. https://doi.org/10.1007/s11160-016-9457-7

    Article  Google Scholar 

  15. Earl DA, von Holt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611‒2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  Google Scholar 

  17. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  18. Froese R, Pauly D (2019) Fishbase. World Wide Web electronic publication. http://www.fishbase.org. Accessed Dec 2019

  19. Gaggiotti OE, Bekkevold D, Jørgensen HB, Foll M, Carvalho GR, Andre C, Ruzzante DE (2009) Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63:2939–2951. https://doi.org/10.1111/j.1558-5646.2009.00779.x

    Article  PubMed  Google Scholar 

  20. Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci USA 106:1473–1478. https://doi.org/10.1073/pnas.0806804106

    Article  PubMed  Google Scholar 

  21. Gao T, Wan Z, Song N, Zhang X, Han Z (2014) Evolutionary mechanisms shaping the genetic population structure of coastal fish: insight from populations of Coilia nasus in Northwestern Pacific. Mitochondrial DNA A 25:464–472. https://doi.org/10.3109/19401736.2013.814109

    CAS  Article  Google Scholar 

  22. Garant DANY, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443. https://doi.org/10.1111/j.1365-2435.2006.01228.x

    Article  Google Scholar 

  23. Guo X, Miyazawa Y, Yamagata T (2006) The Kuroshio Onshore intrusion along the shelf break of the East China Sea: the origin of the Tsushima Warm Current. J Phys Oceanogr 36:2205–2231. https://doi.org/10.1175/JPO2976.1

    Article  Google Scholar 

  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  25. Han IS, Suh YS, Seong KT (2013) Wind-induced spatial and temporal variations in the thermohaline front in the Jeju Strait, Korea. Korean J Fish Aquat Sci 16:117–124. https://doi.org/10.5657/FAS.2013.0117

    Article  Google Scholar 

  26. Han ZQ, Han G, Wang ZY, Gao TX (2015) The possible physical barrier and coastal dispersal strategy for Japanese grenadier anchovy, Coilia nasus in the East China Sea and Yellow Sea: evidence from AFLP markers. Int J Mol Sci 16:3283–3297. https://doi.org/10.3390/ijms16023283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Henriques R, Potts WM, Santos CV, Sauer WH, Shaw PW (2014) Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela current region: evidence of an ancient vicariant event. PLoS One 9:e87907. https://doi.org/10.1371/journal.pone.0087907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Heras S, Roldán MI, Castro MG (2009) Molecular phylogeny of Mugilidae fishes revised. Rev Fish Biol Fish 19:217–231. https://doi.org/10.1007/s11160-008-9100-3

    Article  Google Scholar 

  29. Heras S, Maltagliati F, Fernández MV, Roldán MI (2016) Shaken not stirred: a molecular contribution to the systematics of genus Mugil (Teleostei, Mugilidae). Integr Zool 11:263–281. https://doi.org/10.1111/1749-4877.12173

    Article  PubMed  Google Scholar 

  30. Hollenbeck CM, Portnoy DS, Gold JR (2019) Evolution of population structure in an estuarine-dependent marine fish. Ecol Evol 9:3141–3152. https://doi.org/10.1111/mec.14028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Hwang JH, Van SP, Choi BJ, Chang YS, Kim YH (2014) The physical processes in the Yellow Sea. Ocean Coast Manag 102:449–457. https://doi.org/10.1016/j.ocecoaman.2014.03.026

    Article  Google Scholar 

  32. Ivanova NV, Zemlak TS, Hanner RH, Hebert PD (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x

    CAS  Article  Google Scholar 

  33. Jamandre BW, Durand J, Tzeng W (2009) Phylogeography of the flathead mullet Mugil cephalus in the north-west Pacific as inferred from the mtDNA control region. J Fish Biol 75:393–407. https://doi.org/10.1111/j.1095-8649.2009.02332.x

    CAS  Article  PubMed  Google Scholar 

  34. Ke H, Lin W, Kao H (2009) Genetic diversity and differentiation of grey mullet (Mugil cephalus) in the coastal waters of Taiwan. Zool Sci 26:421–428. https://doi.org/10.2108/zsj.26.421

    CAS  Article  PubMed  Google Scholar 

  35. Kim JK (1999) Phylogenetic study of Mugilidae (Mugiliformes) in the Korean waters. PhD thesis, Pukyong National University, Korea

  36. Kim JK, Park JY, Kim YS (2006) Genetic diversity, relationships and demographic history of three geographic populations of Ammodytes personatus (Ammodytidae) from Korea inferred from mitochondrial DNA control region and 16S rRNA sequence data. Korean J Genet 28:343–351

    CAS  Google Scholar 

  37. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    CAS  Article  Google Scholar 

  38. Kottelat M (2013) The fishes of the inland waters of southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles B Zool 27:1–663

    Google Scholar 

  39. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lee CL, Joo DS (1994) Synopsis of family Mugilidae (Perciformes) from Korea. Bull Korean Fish Soc 27:814–824

    Google Scholar 

  41. Lee KM, Yang EC, Coyer JA, Zuccarello GC, Wang W, Choi CG, Boo SM (2012) Phylogeography of the seaweed Ishige okamurae (Phaeophyceae): evidence for glacial refugia in the northwest Pacific region. Mar Biol 159:1021–1028. https://doi.org/10.1007/s00227-012-1882-0

    Article  Google Scholar 

  42. Li Y, Chen X, Chen C, Ge J, Ji R, Tian R, Xue P, Xu L (2014) Dispersal and survival of chub mackerel (Scomber japonicus) larvae in the East China Sea. Ecol Model 283:70–84. https://doi.org/10.1016/j.ecolmodel.2014.03.016

    Article  Google Scholar 

  43. Li Y, Zhou Y, Li P, Gao T, Lin L (2019) Species identification and cryptic diversity in Pampus species as inferred from morphological and molecular characteristics. Mar Biodivers 49:2521–2534. https://doi.org/10.1007/s12526-019-00976-6

    Article  Google Scholar 

  44. Liu JY (2013) Status of marine biodiversity of the China Seas. PLoS One 8:e50719. https://doi.org/10.1371/journal.pone.0050719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Liu JX, Gao TX, Yokogawa K, Zhang YP (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern pacific. Mol Phylogenet Evol 39:799–811. https://doi.org/10.1016/j.ympev.2006.01.009

    CAS  Article  PubMed  Google Scholar 

  46. Liu JX, Gai TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol 16:275–288. https://doi.org/10.1111/j.1365-294X.2006.03140.x

    CAS  Article  PubMed  Google Scholar 

  47. Liu JY, Brown CL, Yang TB (2009) Population genetic structure and historical demography of grey mullet, Mugil cephalus, along the coast of China, inferred by analysis of the mitochondrial control region. Biochem Syst Ecol 37:556–566. https://doi.org/10.1016/j.bse.2009.09.002

    CAS  Article  Google Scholar 

  48. Liu L, Liu LQ, Gao TX, Song N (2018) Phylogeographic pattern of Liza affinis populations in Chinese coastal waters: estimation of larval dispersal potential. Mitochondrial DNA A 29:1253–1260. https://doi.org/10.1080/24701394.2018.1444038

    CAS  Article  Google Scholar 

  49. Liu L, Zhang X, Sun D, Gao T, Song N (2019a) Population genetic structure of Liza affinis (Eastern Keelback Mullet), reveals high gene flow inferred from microsatellite analysis. Ocean Sci J 54:245–256. https://doi.org/10.1007/s12601-019-0013-y

    Article  Google Scholar 

  50. Liu L, Zhang X, Li C, Zhang H, Yanagimoto T, Song N, Gao T (2019b) Population genetic structure of Marbled Rockfish, Sebastiscus marmoratus (Cuvier, 1829), in the northwestern Pacific Ocean. ZooKeys 830:127–144. https://doi.org/10.3897/zookeys.830.30586

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maggs CA, Castilho R, Foltz D et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122. https://doi.org/10.1890/08-0257.1

    Article  PubMed  Google Scholar 

  52. Mai AC, Mino CI, Marins LF et al (2014) Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuar Coast Shelf Sci 149:80–86. https://doi.org/10.1016/j.ecss.2014.07.013

    Article  Google Scholar 

  53. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  Google Scholar 

  54. Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE (2018) Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol 2:1128–1138. https://doi.org/10.1038/s41559-018-0581-8

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marques DA, Meier JI, Seehausen O (2019) A combinatorial view on speciation and adaptive radiation. Trends Ecol Evol 34:6. https://doi.org/10.1016/j.tree.2019.02.008

    Article  Google Scholar 

  56. Martinez-Takeshita N, Purcell CM, Chabot CL, Craig MT, Paterson CN, Hyde JR, Allen LG (2015) A tale of three tails: cryptic speciation in a globally distributed marine fish of the genus Seriola. Copeia 103:357–368. https://doi.org/10.1643/CI-124-224

    Article  Google Scholar 

  57. Myoung SH, Kim JK (2014) Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes Genom 36:591–598. https://doi.org/10.1007/s13258-014-0197-6

    Article  Google Scholar 

  58. Neves JM, Almeida JP, Sturaro MJ, FabrÉ NN, Pereira RJ, Mott T (2020) Deep genetic divergence and paraphyly in cryptic species of Mugil fishes (Actinopterygii: Mugilidae). Syst Biodivers. https://doi.org/10.1080/14772000.2020.1729892

    Article  Google Scholar 

  59. Nirchio M, Cipriano R, Cestari M, Fenocchio A (2005) Cytogenetical and morphological features reveal significant differences among Venezuelan and Brazilian samples of Mugil curema (Teleostei: Mugilidae). Neotrop Ichthyol 3:107–110. https://doi.org/10.1590/S1679-62252005000100006

    Article  Google Scholar 

  60. Rebstock GA, Kang YS (2003) A comparison of three marine ecosystems surrounding the Korean peninsula: responses to climate change. Prog Oceanogr 59:357–379. https://doi.org/10.1016/j.pocean.2003.10.002

    Article  Google Scholar 

  61. Sandoval-Castillo J, Rocha-Olivares A, Villavicencio-Garayzar C, Balart E (2004) Cryptic isolation of Gulf of California shovelnose guitarfish evidenced by mitochondrial DNA. Mar Biol 145:983–988. https://doi.org/10.1007/s00227-004-1378-7

    CAS  Article  Google Scholar 

  62. Shen KN, Jamandre BW, Hsu C, Tzeng W, Durand J (2011) Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol Biol 11:83. https://doi.org/10.1186/1471-2148-11-83

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Shen KN, Chang CW, Durand JD (2015) Spawning segregation and philopatry are major prezygotic barriers in sympatric cryptic Mugil cephalus species. C R Biol 338:803–811. https://doi.org/10.1016/j.crvi.2015.07.009

    Article  PubMed  Google Scholar 

  64. Siccha-Ramirez R, Menezes NA, Nirchio M, Foresti F, Oliveira C (2014) Molecular identification of Mullet Species of the Atlantic South Caribbean and South America and the phylogeographic analysis of Mugil liza. Rev Fish Sci Aquat 22:86–96. https://doi.org/10.1080/10641262.2013.833583

    Article  Google Scholar 

  65. Son YT, Lee SH, Lee JC, Kim JC (2003) Water basses and frontal structures in winter in the Northern East China Sea. J Korean Soc Oceanogr 8:327–339

    Google Scholar 

  66. Song N, Zhang XM, Sun XF, Yanagimoto T, Gao TX (2010) Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific. J Fish Biol 77:388–402. https://doi.org/10.1111/j.1095-8649.2010.02694.x

    CAS  Article  PubMed  Google Scholar 

  67. Sun P, Shi Z, Yin F, Peng S (2012) Genetic variation analysis of Mugil cephalus in China Sea based on mitochondrial COI gene sequences. Biochem Genet 50:180–191. https://doi.org/10.1007/s10528-011-9460-6

    CAS  Article  PubMed  Google Scholar 

  68. Tang W, Fu C, Yin W, Li G, Chen H, Wu Q, Li B (2010) Cryptic species and historical biogeography of eel gobies (Gobioidei: Odontamblyopus) along the northwestern Pacific coast. Zool Sci 27:8–13. https://doi.org/10.2108/zsj.27.8

    Article  PubMed  Google Scholar 

  69. Temminck CJ, Schlegel H (1845) Pisces. In: von Siebold PF (ed) Fauna Japonica, Parts 7‒9. Lugduni, Batavorum, pp 134–135

    Google Scholar 

  70. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Viet Tran TT, Ke Phan L, Durand J (2017) Diversity and distribution of cryptic species within the Mugil cephalus species complex in Vietnam. Mitochondrial DNA A 28:1–9. https://doi.org/10.3109/24701394.2016.1143467

    CAS  Article  Google Scholar 

  72. Waldrop E, Hobbs JA, Randall JE, DiBattista JD, Rocha LA, Kosaki RK, Berumen ML, Bowen BW (2016) Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon). J Biogeogr 43:1116–1129. https://doi.org/10.1111/jbi.12680

    Article  Google Scholar 

  73. Wang J, Ganmanee M, Shau-Hwai AT, Mujahid A, Dong YW (2016) Pleistocene events and present environmental factors have shaped the phylogeography of the intertidal limpet Cellana toreuma (reeve, 1855) (Gastropoda: Nacellidae) in Southeast Asia and China. J Molluscan Stud 82:378–390. https://doi.org/10.1093/mollus/eyv071

    Article  Google Scholar 

  74. Ward RD, Zemlak TS, Innes BH, Last PR and Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847‒1857. https://doi.org/10.1098/rstb.2005.1716

    CAS  Article  PubMed  Google Scholar 

  75. Whitfield A, Panfili J, Durand J (2012) A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Rev Fish Biol Fish 22:641–681. https://doi.org/10.1007/s11160-012-9263-9

    Article  Google Scholar 

  76. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  77. Yang TY, Gao TX, Meng W, Jiang YL (2020) Genome-wide population structure and genetic diversity of Japanese whiting (Sillago japonica) inferred from genotyping-by-sequencing (GBS): implications for fisheries management. Fish Res 225:105501. https://doi.org/10.1016/j.fishres.2020.105501

    Article  Google Scholar 

  78. Zhou F, Xue H, Huang D, Xuan J, Ni X, Xiu P, Hao Q (2015) Cross-shelf exchange in the shelf of the East China Sea. J Geophys Res Oceans 120:1545–1572. https://doi.org/10.1002/2014JC010567

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (no. 20170431). We are grateful to T. Nakabo (Kyoto University), Y. Kai (Kyoto University) for providing the flathead grey mullet in Japan and valuable comments for the manuscript. We also thank the Biodiversity Research Museum, Academia Sinica, Taiwan and Forestry Bureau, Council of Agriculture, Taiwan for providing samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Koo Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, S.E., Kim, J. & Li, C. A new perspective on biogeographic barrier in the flathead grey mullet (Pisces: Mugilidae) from the northwest Pacific. Genes Genom 42, 791–803 (2020). https://doi.org/10.1007/s13258-020-00942-8

Download citation

Keywords

  • Biogeographic barrier
  • Microsatellite
  • mtDNA
  • Flathead grey mullet
  • Mugil japonicus