Skip to main content
Log in

Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Sulfolobus species can grow on a variety of organic compounds as carbon and energy sources. These species degrade glucose to pyruvate by the modified branched Entner–Doudoroff pathway. We attempted to determine the differentially expressed genes (DEGs) under sugar-limited and sugar-rich conditions. RNA sequencing (RNA-seq) was used to quantify the expression of the genes and identify those DEGs between the S. acidocaldarius cells grown under sugar-rich (YT with glucose) and sugar-limited (YT only) conditions. The functions and pathways of the DEGs were examined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time PCR (qRT-PCR) was performed to validate the DEGs. Transcriptome analysis of the DSM 639 strain grown on sugar-limited and sugar-rich media revealed that 853 genes were differentially expressed, among which 481 were upregulated and 372 were downregulated under the glucose-supplemented condition. In particular, 70 genes showed significant changes in expression levels of ≥ twofold. GO and KEGG enrichment analyses revealed that the genes encoding components of central carbon metabolism, the respiratory chain, and protein and amino acid biosynthetic machinery were upregulated under the glucose condition. RNA-seq and qRT-PCR analyses indicated that the sulfur assimilation genes (Saci_2197–2204) including phosphoadenosine phosphosulfate reductase and sulfite reductase were significantly upregulated in the presence of glucose. The present study revealed metabolic networks in S. acidocaldarius that are induced in a glucose-dependent manner, improving our understanding of biomass production under sugar-rich conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G (2010) Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156:256–269

    Article  CAS  Google Scholar 

  • Borirak O, Rolfe MD, de Koning LJ, Hoefsloot HC, Bekker M, Dekker HL, Roseboom W, Green J, de Koster CG, Hellingwerf KJ (2015) Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. Biochim Biophys Acta 1854:1269–1279

    Article  CAS  Google Scholar 

  • Brasen C, Esser D, Rauch B, Siebers B (2014) Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 78:89–175

    Article  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  Google Scholar 

  • Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP et al (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224:407–414

    Article  Google Scholar 

  • Elferink MG, Albers SV, Konings WN, Driessen AJ (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503

    Article  CAS  Google Scholar 

  • Ettema TJ, Ahmed H, Geerling AC, van der Oost J, Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12:75–88

    Article  CAS  Google Scholar 

  • Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111–2127

    Article  CAS  Google Scholar 

  • Gleissner M, Kaiser U, Antonopoulos E, Schafer G (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426

    Article  CAS  Google Scholar 

  • Gogliettino M, Balestrieri M, Pocsfalvi G, Fiume I, Natale L, Rossi M, Palmieri G (2010) A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus. J Bacteriol 192:3123–3131

    Article  CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    Article  CAS  Google Scholar 

  • Hiller A, Henninger T, Schafer G, Schmidt CL (2003) New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 35:121–131

    Article  CAS  Google Scholar 

  • Huber H, Prangishvili D (2006) Sulfolobales. In: Falkow S, Rosenberg E, Dworkin M, Stackenbrandt E (eds) The prokaryotes. Springer, New York, pp 23–51

    Chapter  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Komorowski L, Verheyen W, Schafer G (2002) The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 383:1791–1799

    Article  CAS  Google Scholar 

  • Koning SM, Albers SV, Konings WN, Driessen AJ (2002) Sugar transport in (hyper) thermophilic archaea. Res Microbiol 153:61–67

    Article  CAS  Google Scholar 

  • Kouril T, Esser D, Kort J, Westerhoff HV, Siebers B, Snoep JL (2013) Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus. FEBS J 280:4666–4680

    Article  CAS  Google Scholar 

  • Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ (2003) Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 278:34066–34072

    Article  CAS  Google Scholar 

  • Lamble HJ, Milburn CC, Taylor GL, Hough DW, Danson MJ (2004) Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576:133–136

    Article  CAS  Google Scholar 

  • Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ (2005) Promiscuity in the part-phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869

    Article  CAS  Google Scholar 

  • Littlechild JA, Isupov M (2001) Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus. Methods Enzymol 331:105–117

    Article  CAS  Google Scholar 

  • Lubben M, Kolmerer B, Saraste M (1992) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11:805–812

    Article  CAS  Google Scholar 

  • Lubben M, Arnaud S, Castresana J, Warne A, Albracht SP, Saraste M (1994a) A second terminal oxidase in Sulfolobus acidocaldarius. Eur J Biochem 224:151–159

    Article  CAS  Google Scholar 

  • Lubben M, Warne A, Albracht SP, Saraste M (1994b) The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem. Mol Microbiol 13:327–335

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  • Purschke WG, Schmidt CL, Petersen A, Schafer G (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353

    Article  CAS  Google Scholar 

  • Qureshi R, Sacan A (2013) Weighted set enrichment of gene expression data. BMC Syst Biol 7:S10

    Article  Google Scholar 

  • Ramos-Vera WH, Berg IA, Fuchs G (2009) Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J Bacteriol 191:4286–4297

    Article  CAS  Google Scholar 

  • Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindas AC, Bernander R, Wright PC, Siebers B et al (2013) Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 12:3908–3923

    Article  CAS  Google Scholar 

  • Schafer G, Engelhard M, Muller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schonheit P (1997) Comparative analysis of Embden–Meyerhof and Entner–Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    Article  CAS  Google Scholar 

  • Simon G, Walther J, Zabeti N, Combet-Blanc Y, Auria R, van der Oost J, Casalot L (2009) Effect of O2 concentrations on Sulfolobus solfataricus P2. FEMS Microbiol Lett 299:255–260

    Article  CAS  Google Scholar 

  • Snijders AP, Walther J, Peter S, Kinnman I, de Vos MG, van de Werken HJ, Brouns SJ, van der Oost J, Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6:1518–1529

    Article  CAS  Google Scholar 

  • Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 7:e43401

    Article  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  CAS  Google Scholar 

  • Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Muller KB, Meyer BH, Hoffmann L, Shen L, Albaum SP et al (2016) A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. Mol Microbiol 102:882–908

    Article  CAS  Google Scholar 

  • Yang JW, Zheng DJ, Cui BD, Yang M, Chen YZ (2016) RNA-seq transcriptome analysis of a Pseudomonas strain with diversified catalytic properties growth under different culture medium. MicrobiologyOpen 5:626–636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2016R1A2B4011554) to J. Cha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Su Seo or Jaeho Cha.

Ethics declarations

Conflict of interest

Jungwook Park declares that he has no conflict of interest. Areum Lee declares that she has no conflict of interest. Hyun-Hee Lee declares that she has no conflict of interest. Inmyoung Park declares that she has no conflict of interest. Young-Su Seo declares that he has no conflict of interest. Jaeho Cha declares that he has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 277 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, A., Lee, HH. et al. Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639. Genes Genom 40, 1157–1167 (2018). https://doi.org/10.1007/s13258-018-0675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0675-3

Keywords

Navigation