Advertisement

Genes & Genomics

, Volume 40, Issue 3, pp 305–314 | Cite as

Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing

  • Zhanghui Dong
  • Jianhong Zhang
  • Qingzhu Zhu
  • Lifen Zhao
  • Shuxiang Sui
  • Zengshu Li
  • Yanli Zhang
  • Hu Wang
  • Dongliang Tian
  • Yankun Zhao
Research Article
  • 127 Downloads

Abstract

Drought stress is one of the most important abiotic stresses. Cotton is classified as drought tolerant crop but the regulatory mechanism is unknown. MicroRNAs (miRNAs) have been implicated important roles in stress responses in many plants. However, the study of miRNAs in cotton responsive to drought stress is limited, especially in early-maturing cotton. In this study, we performed deep sequencing of small RNAs to identify known and novel miRNAs involved in the regulation of drought stress and understand the expression profile of miRNAs in early-maturing cotton. Three cotton small RNA libraries: non-stressed Shizao1 (early-maturing cotton variety) library (NSS), drought-stressed Shizao1 library (DSS) and non-stressed Jimian958 (medium-maturing cotton variety) library (NSJ) were constructed for deep sequencing. As a result, we identified a total of 64 known and 67 novel miRNAs in the 3 libraries and 88 of them were dramatically differentially expressed (greater than twofold) during drought stress. In addition, we found the expression of 41 miRNAs increased or reduced more than twofold in early-maturing cotton variety compared with that in medium-maturing cotton variety. Our results significantly increased the number of miRNAs in cotton and revealed for the first time the expression profile of miRNAs for early-maturing cotton.

Keywords

MiRNAs Drought stress Medium-maturing cotton Early-maturing cotton Deep Sequencing 

Notes

Acknowledgements

This work was supported by China Agriculture Research System of cotton (CARS-18-27), National science and technology major project (2018ZX08005001-007), Hebei Agriculture Research System of cotton (HBCT2013030202) and Science and Technology Support Plan of Hebei (16226303D-2).

Compliance with ethical standards

Conflict of interest

All authors, Zhanghui Dong, Jianhong Zhang, Qingzhu Zhu, Lifen Zhao, Shuxiang Sui, Zengshu Li, Yanli Zhang, Hu Wang, Dongliang Tian, and Yankun Zhao declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

13258_2017_637_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 KB)
13258_2017_637_MOESM2_ESM.xlsx (20 kb)
Supplementary material 2 (XLSX 19 KB)
13258_2017_637_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3 (XLSX 10 KB)
13258_2017_637_MOESM4_ESM.xlsx (84 kb)
Supplementary material 4 (XLSX 83 KB)
13258_2017_637_MOESM5_ESM.xlsx (9 kb)
Supplementary material 5 (XLSX 9 KB)
13258_2017_637_MOESM6_ESM.docx (5.3 mb)
Supplementary material 6 (DOCX 5455 KB)
13258_2017_637_MOESM7_ESM.docx (59 kb)
Supplementary material 7 (DOCX 59 KB)

References

  1. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M (2003) A uniform system for microRNA annotation. RNA 9:277–279CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741.  https://doi.org/10.1105/tpc.016238 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butt HI, Yang Z, Chen E, Zhao G, Gong Q, Yang Z, Zhang X, Li F (2017) Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic Arabidopsis. PloS ONE 12:e0170578.  https://doi.org/10.1371/journal.pone.0170578 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025.  https://doi.org/10.1126/science.1088060 CrossRefPubMedGoogle Scholar
  5. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucl Acids Res 33:e179.  https://doi.org/10.1093/nar/gni178 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucl Acids Res 39:W155–W159.  https://doi.org/10.1093/nar/gkr319 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38.  https://doi.org/10.1093/aob/mcn205 CrossRefPubMedGoogle Scholar
  8. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242.  https://doi.org/10.1007/s11033-010-0100-8 CrossRefPubMedGoogle Scholar
  9. Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44.  https://doi.org/10.1016/j.pbi.2004.11.008 CrossRefPubMedGoogle Scholar
  10. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518.  https://doi.org/10.1111/tpj.12746 CrossRefPubMedGoogle Scholar
  11. Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genom 10:457.  https://doi.org/10.1186/1471-2164-10-457 CrossRefGoogle Scholar
  12. Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170.  https://doi.org/10.1186/1471-2229-11-170 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li JB, Ni Dong X, Lei Z, Liang Li Y, Yang Yang P, Tao F, Zhao L, Li SG, Du LF, Shao JR (2016) Simultaneous overexpression of the HhERF2 and PeDREB2a genes enhanced tolerances to salt and drought in transgenic cotton. Protein Pept Lett 23:450–458CrossRefPubMedGoogle Scholar
  14. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843.  https://doi.org/10.1261/rna.895308 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151.  https://doi.org/10.1111/j.1365-313X.2008.03497.x CrossRefPubMedGoogle Scholar
  16. Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–3517.  https://doi.org/10.1093/jxb/erq185 CrossRefPubMedGoogle Scholar
  17. Lv S, Nie X, Wang L, Du X, Biradar SS, Jia X, Weining S (2012) Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13:2973–2984CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148.  https://doi.org/10.1371/journal.pbio.1000148 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190.  https://doi.org/10.1105/tpc.108.064311 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Miao Q, Deng P, Saha S, Jenkins JN, Hsu CY, Abdurakhmonov IY, Buriev ZT, Pepper A, Ma DP (2017) Genome-wide identification and characterization of microRNAs differentially expressed in fibers in a cotton phytochrome A1 RNAi line. PLoS ONE 12:e0179381.  https://doi.org/10.1371/journal.pone.0179381 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucl Acids Res 43:130–137.  https://doi.org/10.1093/nar/gku1063 CrossRefGoogle Scholar
  22. Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129.  https://doi.org/10.1007/s11103-013-0040-5 CrossRefPubMedGoogle Scholar
  23. Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10:R122.  https://doi.org/10.1186/gb-2009-10-11-r122 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004CrossRefPubMedGoogle Scholar
  25. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527.  https://doi.org/10.1016/j.devcel.2005.01.018 CrossRefPubMedGoogle Scholar
  26. Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748.  https://doi.org/10.1016/j.bbagrm.2008.04.004 CrossRefPubMedGoogle Scholar
  27. Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11:5.  https://doi.org/10.1186/1471-2229-11-5 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sun R, Li C, Zhang J, Li F, Ma L, Tan Y, Wang Q, Zhang B (2017) Differential expression of microRNAs during fiber development between fuzzless-lintless mutant and its wild-type allotetraploid cotton. Sci Rep 7:3.  https://doi.org/10.1038/s41598-017-00038-6 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019.  https://doi.org/10.1105/tpc.104.022830 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech 17:113–122.  https://doi.org/10.1016/j.copbio.2006.02.002 CrossRefPubMedGoogle Scholar
  31. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195.  https://doi.org/10.1016/j.pbi.2006.01.019 CrossRefPubMedGoogle Scholar
  32. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749.  https://doi.org/10.1016/j.cell.2009.06.014 CrossRefPubMedGoogle Scholar
  33. Wang ZM, Xue W, Dong CJ, Jin LG, Bian SM, Wang C, Wu XY, Liu JY (2012) A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules. Mol Plant 5:889–900.  https://doi.org/10.1093/mp/ssr094 CrossRefPubMedGoogle Scholar
  34. Wang Q, Liu N, Yang X, Tu L, Zhang X (2016) Small RNA-mediated responses to low- and high-temperature stresses in cotton. Sci Rep 6:35558.  https://doi.org/10.1038/srep35558 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang M, Sun R, Li C, Wang Q, Zhang B (2017) MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development. Sci Rep 7:44454.  https://doi.org/10.1038/srep44454 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759.  https://doi.org/10.1016/j.cell.2009.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804.  https://doi.org/10.1093/jxb/eru437 CrossRefPubMedGoogle Scholar
  38. Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141.  https://doi.org/10.1186/s12870-015-0532-3 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang Y, Dong C, Li X, Du J, Qian M, Sun X, Yang Y (2016) A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana. Plant Cell Rep 35:2227–2239.  https://doi.org/10.1007/s00299-016-2030-y CrossRefPubMedGoogle Scholar
  40. Yin Z, Li Y, Yu J, Liu Y, Li C, Han X, Shen F (2012) Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Mol Biol Rep 39:4961–4970.  https://doi.org/10.1007/s11033-011-1292-2 CrossRefPubMedGoogle Scholar
  41. Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37.  https://doi.org/10.1016/j.gene.2007.03.020 CrossRefPubMedGoogle Scholar
  42. Zhang Y, Wang W, Chen J, Liu J, Xia M, Shen F (2015) Identification of miRNAs and their targets in cotton inoculated with Verticillium dahliae by high-throughput sequencing and degradome analysis. Int J Mol Sci 16:14749–14768.  https://doi.org/10.3390/ijms160714749 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Shao H (2016) Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci 7:325.  https://doi.org/10.3389/fpls.2016.00325 PubMedPubMedCentralGoogle Scholar
  44. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590.  https://doi.org/10.1016/j.bbrc.2007.01.022 CrossRefPubMedGoogle Scholar
  45. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Zhanghui Dong
    • 1
  • Jianhong Zhang
    • 2
  • Qingzhu Zhu
    • 1
  • Lifen Zhao
    • 1
  • Shuxiang Sui
    • 1
  • Zengshu Li
    • 1
  • Yanli Zhang
    • 1
  • Hu Wang
    • 1
  • Dongliang Tian
    • 1
  • Yankun Zhao
    • 1
  1. 1.Shijiazhuang Academy of Agricultural and Forestry SciencesShijiazhuangChina
  2. 2.Institute of CottonHebei Academy of Agriculture and Forestry SciencesShijiazhuangChina

Personalised recommendations