Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions

Abstract

This study is motivated by the estimation of many crop yield densities, each with a small number of observations. These densities tend to resemble one another if they are spatially proximate. To gain flexibility and improve efficiency, we propose kernel-based estimators refined by empirical likelihood probability weights derived under spatially smoothed moment conditions. We construct spatially smoothed moments based on spline functions, which are robust to outliers and readily customizable. We use these methods to estimate the corn yield distributions of Iowa counties and to predict the premiums of crop insurance programs. Monte Carlo simulations and an empirical application demonstrate the good performance and usefulness of the proposed methods.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abramson IS (1982) On bandwidth variation in kernel estimates—a square root law. Ann Stat 10:1217–1223

    MathSciNet  MATH  Article  Google Scholar 

  2. Baltagi BH, Li J (2014) Further evidence on the spatio-temporal model of house prices in the United States. J Appl Econom 29:515–522

    MathSciNet  Article  Google Scholar 

  3. Baltagi BH, Bresson G, Etienne J-M (2015) Hedonic housing prices in Paris: an unbalanced spatial lag pseudo-panel model with nested random effects. J Appl Econom 30:509–528

    MathSciNet  Article  Google Scholar 

  4. Banerjee S, Gelfand AE, Knight JR, Sirmans CF (2004) Spatial modeling of house prices using normalized distance-weighted sums of stationary processes. J Bus Econ Stat 22:206–213

    MathSciNet  Article  Google Scholar 

  5. Bickel PJ, Fan J (1996) Some problems on the estimation of unimodal densities. Stat Sin 6:23–45

    MathSciNet  MATH  Google Scholar 

  6. Brady RR (2011) Measuring the diffusion of housing prices across space and over time. J Appl Econom 26:213–231

    MathSciNet  Article  Google Scholar 

  7. Cai Z (2001) Weighted Nadaraya–Watson regression estimation. Stat Prob Lett 51:307–318

    MathSciNet  MATH  Article  Google Scholar 

  8. Carbon M, Tran LT, Wu B (1997) Kernel density estimation for random fields. Stat Prob Lett 36:115–125

    MATH  Article  Google Scholar 

  9. Chen SX (1997) Empirical likelihood-based kernel density estimation. Austral J Stat 39:47–56

    MathSciNet  MATH  Article  Google Scholar 

  10. Cheng M-Y, Gasser T, Hall P (1999) Nonparametric density estimation under unimodality and monotonicity constraints. J Comput Graph Stat 8:1–21

    MathSciNet  Google Scholar 

  11. Claassen R, Just RE (2011) Heterogeneity and distributional form of farm-level yields. Am J Agric Econ 93:144–160

    Article  Google Scholar 

  12. Conley TG, Topa G (2002) Socio-economic distance and spatial patterns in unemployment. J Appl Econom 17:303–327

    Article  Google Scholar 

  13. Crespo Cuaresma J, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28:720–741

    MathSciNet  Article  Google Scholar 

  14. Eloyan A, Ghosh SK (2011) Smooth density estimation with moment constraints using mixture distributions. J Nonparam Stat 23:513–531

    MathSciNet  MATH  Article  Google Scholar 

  15. Gao J, Lu Z, Tjøstheim D (2006) Estimation in semiparametric spatial regression. Ann Stat 34:1395–1435

    MathSciNet  MATH  Article  Google Scholar 

  16. Goodwin BK, Ker AP (1998) Nonparametric estimation of crop yield distributions: implications for rating group-risk crop insurance contracts. Am J Agric Econ 80:139–153

    Article  Google Scholar 

  17. Hall P (1990) On the bias of variable bandwidth curve estimators. Biometrika 77:529–535

    MathSciNet  MATH  Article  Google Scholar 

  18. Hall P, Huang L-S (2002) Unimodal density estimation using kernel methods. Stat Sin 12:965–990

    MathSciNet  MATH  Google Scholar 

  19. Hall P, Kang K-H (2005) Unimodal kernel density estimation by data sharpening. Stat Sini 15:73–98

    MathSciNet  MATH  Google Scholar 

  20. Hall P, Marron J (1988) Variable window width kernel estimates of probability densities. Probab Theory Relat Fields 80:37–49

    MathSciNet  MATH  Article  Google Scholar 

  21. Hall P, Presnell B (1999) Density estimation under constraints. J Comput Graph Stat 8:259–277

    MathSciNet  Google Scholar 

  22. Hall P, Hu TC, Marron JS (1995) Improved variable window kernel estimates of probability densities. Ann Stat 23:1–10

    MathSciNet  MATH  Article  Google Scholar 

  23. Hallin M, Lu Z, Tran LT (2004a) Kernel density estimation for spatial processes: the L1 theory. J Multivar Anal 88:61–75

    MATH  Article  Google Scholar 

  24. Hallin M, Lu Z, Tran LT (2001) Density estimation for spatial linear processes. Bernoulli, pp 657–668

  25. Hallin M, Lu Z, Tran LT (2004b) Local linear spatial regression. Ann Stat 32:2469–2500

  26. Harri A, Coble KH, Ker AP, Goodwin BJ (2011) Relaxing heteroscedasticity assumptions in area-yield crop insurance rating. Am J Agric Econ 93:707–717

    Article  Google Scholar 

  27. Iversen ES Jr (2001) Spatially disaggregated real estate indices. J Bus Econ Stat 19:341–357

    MathSciNet  Article  Google Scholar 

  28. Jones M (1990) Variable kernel density estimates and variable kernel density estimates. Austral J Stat 32:361–371

    MathSciNet  Article  Google Scholar 

  29. Jones MC, Signorini DF (1997) A comparison of higher-order bias kernel density estimators. J Am Stat Assoc 92:1063–1073

    MathSciNet  MATH  Article  Google Scholar 

  30. Ker AP, Tolhurst TN, Liu Y (2016) Bayesian estimation of possibly similar yield densities: implications for rating crop insurance contracts. Am J Agric Econ 98:360–382

    Article  Google Scholar 

  31. Lee Y, Choi H, Park B, Yu K (2004) Local likelihood density estimation on random fields. Stat Probab Lett 68:347–357

    MathSciNet  MATH  Article  Google Scholar 

  32. Li Q, Racine JS (2007) Nonparametric econometrics: theory and practice. Princeton University Press, Princeton

    Google Scholar 

  33. Lin Z, Li D, Gao J (2009) Local linear M-estimation in non-parametric spatial regression. J Time Ser Anal 30:286–314

    MathSciNet  MATH  Article  Google Scholar 

  34. Lu Z, Chen X (2004) Spatial Kernel Regression Estimation: Weak Consistency. Statistics & probability letters 68:125–136

    MathSciNet  MATH  Article  Google Scholar 

  35. Majumdar A, Munneke HJ, Gelfand AE, Banerjee S, Sirmans CF (2006) Gradients in spatial response surfaces with application to urban land values. J Bus Econ Stat 24:77–90

    MathSciNet  Article  Google Scholar 

  36. Müller UU, Schick A, Wefelmeyer W (2005) Weighted Residual-Based Density Estimators for Nonlinear Autoregressive Models, Statist. Sinica 15:177–195

    MathSciNet  MATH  Google Scholar 

  37. Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–249

    MathSciNet  MATH  Article  Google Scholar 

  38. Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    MathSciNet  MATH  Article  Google Scholar 

  39. Owen AB (2001) Empirical likelihood. Chapman and Hall, London

    Google Scholar 

  40. Ozaki VA, Silva RS (2009) Bayesian ratemaking procedure of crop insurance contracts with skewed distribution. J Appl Statist 36:443–452

    MathSciNet  MATH  Article  Google Scholar 

  41. Ozaki VA, Goodwin BK, Shirota R (2008) Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts. Appl Econ 40:1151–1164

    Article  Google Scholar 

  42. Park E, Brorsen BW, Harri A (2019) Using Bayesian Kriging for spatial smoothing in crop insurance rating. Am J Agric Econ 101:330–351

    Article  Google Scholar 

  43. Phillips PCB (2001) Descriptive econometrics for non-stationary time series with empirical illustrations. J Appl Econom 16:389–413

    Article  Google Scholar 

  44. Qin G, Tsao M (2005) Empirical likelihood based inference for the derivative of the nonparametric regression function. Bernoulli 11:715–735

    MathSciNet  MATH  Article  Google Scholar 

  45. Racine J, Ker A (2006) Rating crop insurance policies with efficient nonparametric estimators that admit mixed data types. J Agric Resour Econ 31:27–39

    Google Scholar 

  46. Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5–19

    MathSciNet  MATH  Article  Google Scholar 

  47. Schick A, Wefelmeyer W (2009) Improved density estimators for invertible linear processes. Commun Stat Theory Methods 38:3123–3147

    MathSciNet  MATH  Article  Google Scholar 

  48. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Google Scholar 

  49. Tack JB, Holt MT (2015) The influence of weather extremes on the spatial correlation of corn yields. Clim Change, pp 1–11

  50. Terrell GR, Scott DW (1992) Variable kernel density estimation. Ann Stat 20:1236–1265

    MathSciNet  MATH  Article  Google Scholar 

  51. Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37–53

    MathSciNet  MATH  Article  Google Scholar 

  52. Wand M, Jones M (1995) Kernel smoothing. Chapman and Hall, London

    Google Scholar 

  53. Woodard J (2016) Determining optimal data aggregation: an application of out-of-sample mixture models. In: Agricultural and applied economics association annual meeting in Boston. MA, July, Boston

  54. Zhang B (1997) Quantile Processes in the Presence of Auxiliary Information. Ann Inst Stat Math 49:35–55

    MathSciNet  MATH  Article  Google Scholar 

  55. Zhang B (1998) A note on kernel density estimation with auxiliary information. Commun Stat-Theory Methods 27:1–11

    MathSciNet  MATH  Article  Google Scholar 

  56. Zhang YY (2017) A density-ratio model of crop yield distributions. Am J Agric Econ 99:1327–1343

    Article  Google Scholar 

  57. Zhang J, Liu A (2003) Local polynomial fitting based on empirical likelihood. Bernoulli 9:579–605

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

Kuangyu Wen’s research is supported by the Fundamental Research Funds for the Central Universities, HUST: 2019WKYXQN058.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kuangyu Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Wu, X. & Leatham, D.J. Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions. JABES (2021). https://doi.org/10.1007/s13253-021-00442-6

Download citation

Keywords

  • Crop yield distributions
  • Empirical likelihood
  • Insurance
  • Kernel density estimation
  • Spatial smoothing