Skip to main content
Log in

Spatial Variability in Slash Linear Modeling with Finite Second Moment

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

This article studies the dependence of spatial linear models using a slash distribution with a finite second moment. The parameters of the model are estimated with maximum likelihood by using the EM algorithm. To avoid identifiability problems, the cross-validation, the Trace and the maximum log-likelihood value are used to choose the parameter for adjusting the kurtosis of the slash distribution and the selection of the model to explain the spatial dependence. We present diagnostic techniques of global and local influences for exploring the sensibility of estimators and the presence of possible influential observations. A simulation study is developed to determine the performance of the methodology. The results showed the effectiveness of the choice criteria of the parameter for adjusting the kurtosis and for the selection of the spatial dependence model. It has also showed that the slash distribution provides an increased robustness to the presence of influential observations. As an illustration, the proposed model and its diagnostics are used to analyze an aquifer data. The spatial prediction with and without the influential observations were compared. The results show that the contours of the interpolation maps and prediction standard error maps showed low changes when we removed the influential observations. Thus, this model is a robust alternative in the spatial linear modeling for dependent random variables. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. (1974), “A new look at statistical model identification,” IEEE Transactions on Automatic Control, 19, 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Alcantara, I. C., and Cysneiros, F. J. A. (2013), “Linear regression models with slash-elliptical erros,” Computational Statistics and Data Analysis, 64, 153–164.

    Article  MathSciNet  Google Scholar 

  • Anderson, J. F., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976), “A land use and land cover classification system for use with remote sensor data,” U.S. Geological Survey Professional Paper 964, Washington.

  • Assumpção, R. A. B., Uribe-Opazo, M. A. and Galea, M. (2014),“ Analysis of local influence in geostatistics using Student-t distribution,” Journal of Applied Statistics, 41, 2323–2341.

    Article  MathSciNet  Google Scholar 

  • Belsley, D. A., Kuh, E., Weslsh, R. E. (1980) Regression diagnostics: identifying influential data and sources of collinearity John Wiley, New York.

    Book  MATH  Google Scholar 

  • Christensen, R., Johnson, W., and Pearson L. (1996), “Crediction diagnostics for spatial linear models,” Biometrika, 79, 583–591.

    Article  MATH  Google Scholar 

  • Cook, R. D. (1977), “Detection of influential observations in linear regression,” Technometrics, 19(1), 15–18.

    MathSciNet  MATH  Google Scholar 

  • Cook, R. D. (1986), “Assessment of local influence,” Journal of the Royal Statistical Society, B 48, 133–169.

    MathSciNet  MATH  Google Scholar 

  • De Bastiani, F., Mariz de Aquino Cysneiros, A. H., Uribe-Opazo, M. A., and Galea, M. (2015), “Influence diagnostics in elliptical spatial linear models,” TEST, 24 (2), 322–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., and Ribeiro Jr., P. J. (2007), Model-based Geostatistics Springer, New York.

    MATH  Google Scholar 

  • Galea, M., Díaz-García, J. A., and Vilca, F. (2008), “Influence diagnostics in the capital asset pricing model under elliptical distributions,” Journal of Applied Statistics, 35, 179–192.

    Article  MathSciNet  Google Scholar 

  • Genton, M., and Zhang, H., (2012), “Identifiability problems in some non-gaussian spatial random fields,” Chilean Journal of Statistics, 3 (2), 171–179.

    MathSciNet  Google Scholar 

  • Gradshteyn, I., and Ryzhik, I. (2000), Tables of Integrals, Series and Products Academic Press, New York.

    MATH  Google Scholar 

  • Guedes, L.P.C., Uribe-Opazo, M., Ribeiro Jr., P. J. (2013), “Influence of incorporating geometric anisotropy on the construction of thematic maps of simulated data and chemical attributes of soil,” Chilean Journal of Agricultural Research, 73, 414–423.

    Article  Google Scholar 

  • Jamshidian, M. (2001), “A note on parameter and standard error estimation in adaptive robust regression,” Journal of Statistics Computation and Simulation, 71, 11–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, R. (1989), “Fitting a stochastic partial differential equation to aquifer data,” Stoch Hydrol Hydraul, 3, 85–96.

    Article  MATH  Google Scholar 

  • Kano, Y., Berkane, M., and Bentler, P. M. (1993), “Statistical inference based on pseudo-maximum likelihood estimators in elliptical populations,” Journal of the American Statistical Association, 88 (421), 135–143.

    MathSciNet  MATH  Google Scholar 

  • Krippendorff, K. (2004), Content Analysis: an Introduction to its Methodology Sage, Thousand Oaks.

    Google Scholar 

  • Lange, K., Little, R., and Taylor, J. (1989), “Robust statistical modeling using the t distribution,” Journal of the American Statistical Association, 84, 881–896.

    MathSciNet  Google Scholar 

  • Lange, K., and Sinsheimer, J. S. (1993), “Normal/independent distributions and their applications in robust regression,” Journal of Computational and Graphical Statistics, 2, 175–198.

    MathSciNet  Google Scholar 

  • Magnus, J., and Neudecker, H. (1999), Matrix differential calculus with applications in statistics and econometrics John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Mardia, K., and Marshall, R. (1984), “Maximum likelihood estimation of models for residual covariance in spatial regression,” Biometrika, 71, 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Matérn, B. (1986) Lecture notes in statistics Springer, New York.

    Google Scholar 

  • Matheron, G. (1963), “Principles of geostatistics,” Economic Geology, 58 (1), 1246–1266.

    Article  Google Scholar 

  • Militino, A., Palacius, M., and Ugarte, M. (2006), “Outliers detection in multivariate spatial linear models,” Journal of Statistical Planning and Inference, 136, 125–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell, A. (1989), “The information matrix, skewness tensor and ?-connections for the general multivariate elliptic distribution,” Annals of the Institute of Statistical Mathematics, 41, 289–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Osorio, F., Paula, G., and Galea, M. (2009), “On estimation and influence diagnostics for the grubbs model under heavy-tailed distributions,” Computational Statistics and Data Analysis, 53 (4), 1249–1263.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, J., Fei, Y., and Foster, P. (2014), “Case-deletion diagnostics for linear mixed models,” Technometrics, 56 (3), 269–281.

    Article  MathSciNet  Google Scholar 

  • Poon, W.,and Poon, Y. S. (1999), “Conformal normal curvature and assessment of local influence,” Journal of the Royal Statistical Society, B 61, 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Ribeiro Jr., P. J., and Diggle, P. J. (2001), “Geor: a package for geostatistical analysis,” R-NEWS 1 (2), 15–18.

    Google Scholar 

  • R Development Core Team. (2016), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

  • Uribe-Opazo, M., Borssoi, J., and Galea, M. (2012), “Influence diagnostics in gaussian spatial linear models,” Journal of Applied Statistics, 39 (3), 615–630.

    Article  MathSciNet  Google Scholar 

  • Venables, W. N., and Ripley, B. D. (2002), Modern Applied Statistics with S Springer, New York.

    Book  MATH  Google Scholar 

  • Watanabe, M., and Yamaguchi, K. (2004), The EM algorithm and related statistical models Marcel Dekker, New York.

    MATH  Google Scholar 

  • Zhang, H. (2004), “Inconsistent estimation and asymptotically equivalent interpolations in model based geostatistics,” Journal of the American Statistical Association, 99, 250–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, H., Ibrahim, J., Lee, S., and Zhang, H. (2007), “Perturbation selection and influence measures in local influence analysis,” Annals of Statistics, 35, 2565–2588.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, H. T., Lee, S. Y., Wei, B. C., and Zhou, J. (2001), “Case-deletion measures for models with incomplete data,” Biometrika, 88, 727–737.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by Capes, Fundação Araucária, CNPq Brazil, FONDECYT (Grant No. 1150325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Fagundes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 193 KB)

Supplementary material 2 (pdf 1564 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagundes, R.S., Uribe-Opazo, M.A., Galea, M. et al. Spatial Variability in Slash Linear Modeling with Finite Second Moment. JABES 23, 276–296 (2018). https://doi.org/10.1007/s13253-018-0322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-018-0322-0

Keywords

Navigation