Advertisement

A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents

  • Duchwan Ryu
  • Devrim Bilgili
  • Önder Ergönül
  • Faming Liang
  • Nader Ebrahimi
Article
  • 164 Downloads

Abstract

Global spread of the Crimean–Congo hemorrhagic fever (CCHF) is a fatal viral infection disease found in parts of Africa, Asia, Eastern Europe and Middle East, with a fatality rate of up to 30%. A timely prediction of the prevalence of CCHF incidents is highly desirable, while CCHF incidents often exhibit nonlinearity in both temporal and spatial features. However, the modeling of discrete incidents is not trivial. Moreover, the CCHF incidents are monthly observed in a long period and take a nonlinear pattern over a region at each time point. Hence, the estimation and the data assimilation for incidents require extensive computations. In this paper, using the data augmentation with latent variables, we propose to utilize a dynamically weighted particle filter to take advantage of its population controlling feature in data assimilation. We apply our approach in an analysis of monthly CCHF incidents data collected in Turkey between 2004 and 2012. The results indicate that CCHF incidents are higher at Northern Central Turkey during summer and that some beforehand interventions to stop the propagation are recommendable. Supplementary materials accompanying this paper appear on-line.

Keywords

Bayesian generalized linear model Data augmentation Dynamically weighted importance sampling Radial basis function networks Spatiotemporal model 

Supplementary material

13253_2017_310_MOESM1_ESM.zip (22 kb)
Supplementary material 1 (zip 22 KB)

References

  1. Al-Tikriti, S. K., Al-Ani, F., Jurji, F. J., Tantawi, H., Al-Moslih, M., Al-Janabi, N., Mahmud, M. I., Al-Bana, A., Habib, H., Al-Munthri, H., Al-Janabi, S., Al-Jawahry, K., Yonan, M., Hassan, F., and Simpson, D. I. H. (1981), “Congo/Crimean haemorrhagic fever in Iraq,” The Bulletin of the World Health Organization, 59, 85–90.Google Scholar
  2. Albert, J. H. and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679.MathSciNetCrossRefMATHGoogle Scholar
  3. Burney, M. I., Ghafoor, A., Saleen, M., Webb, P. A., and Casals, J. (1980), “Nosocomial outbreak of viral hemorrhagic fever caused by Crimean Hemorrhagic fever-Congo virus in Pakistan, January 1976,” The American Journal of Tropical Medicine and Hygiene, 29, 941–947.CrossRefGoogle Scholar
  4. Chapman, L. E., Wilson, M. L., Hall, D. B., LeGuenno, B., Dykstra, E. A., Ba, K., and Fisher-Hoch, S. P. (1991), “Risk factors for Crimean-Congo hemorrhagic fever in rural northern Senegal,” The Journal of Infectious Diseases, 164, 686–692.CrossRefGoogle Scholar
  5. de Freitas, N., Andrieu, C., Højen-Sørensen, P., Niranjan, M., and Gee, A. (2001), “Sequential Monte Carlo Methods for Neural Networks,” in Sequential Monte Carlo Methods in Practice (Statistics for Engineering and Information Science), eds. Doucet, A., de Freitas, N., and Gordon, N., New York: Springer–Verlag, chap. 17, pp. 359–379.Google Scholar
  6. el-Azazy, O. M. and Scrimgeour, E. M. (1997), “Crimean-Congo haemorrhagic fever virus infection in the western province of Saudi Arabia,” Transactions of the Royal Society of Tropical Medicine & Hygine, 91, 275–278.CrossRefGoogle Scholar
  7. Ergonul, O. and Whitehouse, C. A. (2007), Introduction. Crimean Congo Hemorrhagic Fever: A Global Perspective, Dordrecht, the Netherlands: Springer.Google Scholar
  8. Franke, R. (1982), “Scattered data interpolation: Tests of some methods,” Mathematics of Computation, 38, 181–200.MathSciNetMATHGoogle Scholar
  9. Frühwirth-Schnatter, S. and Vagner, H. (2006), “Auxiliary mixture sampling for parameter–driven models of time series of counts with applications to state space modelling,” Biometrika, 97, 827–841.MathSciNetCrossRefMATHGoogle Scholar
  10. Golberg, M. A. and Cho, H. A. (2010), Introduction to Regression Analysis, Billerica, MA: WIT Press.MATHGoogle Scholar
  11. Holmes, C. C. and Mallick, B. K. (1998), “Bayesian Radial Basis Functions of Variable Dimension,” Neural Computation, 10, 1217–1233.CrossRefGoogle Scholar
  12. Holmes, C. C. and Mallick, B. K. (2003), “Generalized Nonlinear Modeling with Multivariate Free–Knot Regression Splines,” Journal of the American Statistical Association, 98, 352–368.MathSciNetCrossRefMATHGoogle Scholar
  13. Hoogstraal, H. (1979), “The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa,” Journal of Medical Entomology, 15, 307–417.CrossRefGoogle Scholar
  14. Jia, B., Xu, S., Xiao, G., Lamba, V., and Liang, F. (2017), “Learning gene regulatory networks from next generation sequencing data,” Biometrics,  https://doi.org/10.1111/biom.12682.
  15. Kappelman, M. D., Moore, K. R., Allen, J. K., and Cook, S. F. (2013), “Recent Trends in the Prevalence of Crohn’s Disease and Ulcerative Colitis in a Commercially Insured US Population,” Digestive Diseases and Sciences, 58, 519–525.CrossRefGoogle Scholar
  16. Kong, A., Liu, J. S., and Wong, W. H. (1994), “Sequential imputations and Bayesian missing data problems,” Journal of the American Statistical Association, 89, 278–288.CrossRefMATHGoogle Scholar
  17. Konishi, S., Ando, T., and Imoto, S. (2004), “Bayesian information criteria and smoothing parameter selection in radial basis function networks,” Biometrika, 91, 27–43.MathSciNetCrossRefMATHGoogle Scholar
  18. Liang, F. (2002), “Dynamically Weighted Importance Sampling in Monte Carlo Computation,” Journal of the American Statistical Association, 97, 807–821.MathSciNetCrossRefMATHGoogle Scholar
  19. Liu, J. S. (2001), Monte Carlo strategies in scientific computing, New York: Springer.MATHGoogle Scholar
  20. Liu, L., Chua, L., and Ghista, D. (2007), “Mesh–free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates,” Composite Structures, 78, 58–69.CrossRefGoogle Scholar
  21. Miazhynskaia, T., Frühwirth-Schnatter, S., and Dorffner, G. (2008), “Neural network models for conditional distribution under bayesian analysis,” Neural Computation, 20, 504–522.MathSciNetCrossRefMATHGoogle Scholar
  22. Papa, A., Ma, B., Kouidou, S., Tang, Q., Hang, C., and Antoniadis, A. (2002), “Genetic characterization of the M RNA segment of Crimean Congo hemorrhagic fever virus strains, China,” Emerging Infectious Diseases, 8, 50–53.CrossRefGoogle Scholar
  23. Ris, R. C., Holthuijsen, L. H., and Booij, N. (1999), “A third-generation wave model for coastal regions 2, verification,” Journal of Geophysical Research, 104, 7667–7681.CrossRefGoogle Scholar
  24. Ryu, D., Liang, F., and Mallick, B. K. (2013), “Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter,” Journal of the American Statistical Association, 108, 111–123.MathSciNetCrossRefMATHGoogle Scholar
  25. Saluzzo, J. F., Aubry, P., McCormick, J., and Digoutte, J. P. (1985), “Haemorrhagic fever caused by Crimean Congo haemorrhagic fever virus in Mauritania,” Transactions of the Royal Society of Tropical Medicine & Hygine, 79, 268.CrossRefGoogle Scholar
  26. Saluzzo, J. F., Digoutte, J. P., Cornet, M., Baudon, D., Roux, J., and Robert, V. (1984), “Isolation of Crimean-Congo haemorrhagic fever and Rift Valley fever viruses in Upper Volta,” The Lancet, 1, 1179.CrossRefGoogle Scholar
  27. Schwarz, T. F., Nsanze, H., and Ameen, A. M. (1997), “Clinical features of Crimean-Congo haemorrhagic fever in the United Arab Emirates,” Infection, 25, 364–367.CrossRefGoogle Scholar
  28. Swanepoel, R., Gill, D. E., Shepherd, A. J., Leman, P. A., Mynhardt, J. H., and Harvey, S. (1989), “The clinical pathology of Crimean-Congo hemorrhagic fever,” Reviews of Infectious Diseases, 11, S794–S800.CrossRefGoogle Scholar
  29. Swanepoel, R., Shepherd, A. J., Leman, P. A., Shepherd, S. P., McGillivray, G. M., Erasmus, M. J., Searle, L. A., and Gill, D. E. (1987), “Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa,” The American Journal of Tropical Medicine and Hygiene, 36, 120–132.CrossRefGoogle Scholar
  30. Tanner, M. A. and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation,” Journal of the American Statistical Association, 82, 528–540.MathSciNetCrossRefMATHGoogle Scholar
  31. Turkiewicz, A., Petersson, I., Bjork, J., Hawker, G., Dahlberg, L., Lohmander, L., and Englund, M. (2014), “Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032,” Osteoarthritis and Cartilage, 22, 1826–1832.CrossRefGoogle Scholar
  32. Williams, R. J., Al-Busaidy, S., Mehta, F. R., Maupin, G. O., Wagoner, K. D., Al-Awaidy, S., Suleiman, A. J., Khan, A. S., Peters, C. J., and Ksiazek, T. G. (2000), “Crimean-congo haemorrhagic fever: a seroepidemiological and tick survey in the Sultanate of Oman,” Tropical Medicine & International Health, 5, 99–106.CrossRefGoogle Scholar
  33. Woodall, J. P. (2007), “Personal reflections,” in Crimean Congo Hemorrhagic Fever: A Global Perspective, eds. Ergonul, O. and Whitehouse, C. A., Dordrecht, the Netherlands: Springer–Verlag, pp. 23–32.Google Scholar
  34. Woodall, J. P., Williams, M. C., and Simpson, D. I. (1967), “Congo virus: a hitherto undescribed virus occurring in Africa. II. Identification studies,” East African Medical Journal, 44, 93–98.Google Scholar
  35. Yan, Y. C. (1983), “Characteristics of Xinjiang hemorrhagic fever virus. II. Physicohemical properties of Xinjiang hemorrhagic fever virus,” Zhonghua Liu Xing Bing Xue Za Zhi, 4, 132–134.Google Scholar
  36. Yilmaz, G. R., Buzgan, T., Irmak, H., Safran, A., Uzun, R., Cevik, M. A., and Torunoglu, M. A. (2008), “The epidemiology of Crimean-Congo hemorrhagic fever in Turkey, 2002-2007,” International Journal of Infectious Diseases, 13, 380–386.CrossRefGoogle Scholar
  37. Yu, K.-H., See, L.-C., Kuo, C.-F., Chou, I.-J., and Chou, M.-J. (2013), “Prevalence and Incidence in Patients With Autoimmune Rheumatic Diseases: A Nationwide Population-Based Study in Taiwan,” Arthritis Care & Research, 65, 244–250.CrossRefGoogle Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  1. 1.Division of StatisticsNorthern Illinois UniversityDeKalbUSA
  2. 2.Department of Mathematics and StatisticsUniversity of North FloridaJacksonvilleUSA
  3. 3.Public Health Departments, School of MedicineKoç UniversityIstanbulTurkey
  4. 4.Department of BiostatisticsUniversity of FloridaGainesvilleUSA

Personalised recommendations