Skip to main content
Log in

Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2019

This article has been updated

Abstract

Aneurysms are considered as a critical cardiovascular disease worldwide when they rupture. The clinical understanding of geometrical impact on the flow behaviour and biomechanics of abdominal aortic aneurysm (AAA) is progressively developing. Proximal neck angulations of AAAs are believed to influence the hemodynamic changes and wall shear stress (WSS) within AAAs. Our aim was to perform pulsatile simulations using computational fluid dynamics (CFD) for patient-specific geometry to investigate the influence of severe angular (≥ 60°) neck on AAA’s hemodynamic and wall shear stress. The patient’s geometrical characteristics were obtained from a computed tomography images database of AAA patients. The AAA geometry was reconstructed using Mimics software. In computational method, blood was assumed Newtonian fluid and an inlet varying velocity waveform in a cardiac cycle was assigned. The CFD study was performed with ANSYS software. The results of flow behaviours indicated that the blood flow through severe bending of angular neck leads to high turbulence and asymmetry of flows within the aneurysm sac resulting in blood recirculation. The high wall shear stress (WSS) occurred near the AAA neck and on surface of aneurysm sac. This study explained and showed flow behaviours and WSS progression within high angular neck AAA and risk prediction of abdominal aorta rupture. We expect that the visualization of blood flow and hemodynamic changes resulted from CFD simulation could be as an extra tool to assist clinicians during a decision making when estimation the risks of interventional procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 05 March 2019

    The name of the third author was incorrect in the initial online publication. The original article has been corrected.

Abbreviations

3D:

Three-dimensional

AAAs:

Abdominal aortic aneurysms

CAD:

Computer-aided design

CFD:

Computational fluid dynamics

CT:

Computed tomography

CVD:

Cardiovascular disease

DICOM:

Digital imaging and communications in medicine

EVAR:

Endovascular aortic aneurysm repair

ILT:

Intraluminal thrombus

MR:

Magnetic resonance

ROI:

Region of interest

STL:

Stereolithography

UDF:

User-defined function

WSS:

Wall shear stress

References

  1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M (2016) Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J 37:3232–3245. https://doi.org/10.1093/eurheartj/ehw334

    Article  PubMed  Google Scholar 

  2. Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, Moran AE (2015) Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res 46:328–338. https://doi.org/10.1016/j.arcmed.2015.06.006

    Article  PubMed  Google Scholar 

  3. Dua MM, Dalman RL (2010) Hemodynamic Influences on abdominal aortic aneurysm disease: Application of biomechanics to aneurysm pathophysiology. Vascul Pharmacol 53:11–21. https://doi.org/10.1016/j.vph.2010.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45:805–814. https://doi.org/10.1016/j.jbiomech.2011.11.021

    Article  CAS  PubMed  Google Scholar 

  5. Lozowy RJ, Kuhn DC, Ducas AA, Boyd AJ (2017) The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms. Cardiovasc Eng Technol 8:57–69. https://doi.org/10.1007/s13239-016-0287-5

    Article  PubMed  Google Scholar 

  6. Drewe CJ, Parker LP, Kelsey LJ, Norman PE, Powell JT, Doyle BJ (2017) Haemodynamics and stresses in abdominal aortic aneurysms: A fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle. J Biomech 60:150–156. https://doi.org/10.1016/j.jbiomech.2017.06.029

    Article  PubMed  Google Scholar 

  7. Raut SS, Chandra S, Shum J, Finol EA (2013) The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann Biomed Eng 41:1459–1477. https://doi.org/10.1007/s10439-013-0786-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arzani A, Suh GY, Dalman RL, Shadden SC (2014) A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Physiol Circ Physiol 307:H1786–H1795. https://doi.org/10.1152/ajpheart.00461.2014

    Article  CAS  Google Scholar 

  9. Ailawadi G, Eliason JL, Upchurch GR (2003) Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg 38:584–588. https://doi.org/10.1016/S0741-5214(03)00324-0

    Article  PubMed  Google Scholar 

  10. Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model. J Biomech Eng 131:31001. https://doi.org/10.1115/1.3005200

    Article  Google Scholar 

  11. Kleinstreuer C, Li Z (2006) Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed Eng Online 5:5–19. https://doi.org/10.1186/1475-925X-5-19

    Article  Google Scholar 

  12. Li Z, Kleinstreuer C (2005) A new wall stress equation for aneurysm-rupture prediction. Ann Biomed Eng 33:209–213. https://doi.org/10.1007/s10439-005-8979-2

    Article  CAS  PubMed  Google Scholar 

  13. Böckler D, Holden A, Krievins D, de Vries JP, Peters AS, Geisbüsch P, Reijnen M (2016) Extended use of endovascular aneurysm sealing for ruptured abdominal aortic aneurysms. Semin Vasc Surg 29:106–113. https://doi.org/10.1053/j.semvascsurg.2016.09.002

    Article  PubMed  Google Scholar 

  14. Argani LP, Torella F, Fisher RK, McWilliams RG, Wall ML, Movchan AB (2017) Deformation and dynamic response of abdominal aortic aneurysm sealing. Sci Rep 7:17712. https://doi.org/10.1038/s41598-017-17759-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Bruin JL, Brownrigg JRW, Karthikesalingam A, Patterson BO, Holt PJ, Hinchliffe RJ, Morgan RA, Loftus IM, Thompson MM (2015) Endovascular aneurysm sealing for the treatment of ruptured abdominal aortic aneurysms. J Endovasc Ther 22:283–287. https://doi.org/10.1177/1526602815582529

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giuma SKB, Osman K, Kadir MRA (2013) Fluid structure interaction analysis in abdominal aortic aneurysms: Influence of diameter, length, and distal neck. J Med Imaging Heal Informatics 3:514–522. https://doi.org/10.1166/jmihi.2013.1201

    Article  Google Scholar 

  17. Xenos M, Alemu Y, Zamfir D, Einav S, Ricotta JJ, Labropoulos N, Tassiopoulos A, Bluestein D (2010) The effect of angulation in abdominal aortic aneurysms: Fluid-structure interaction simulations of idealized geometries. Med Biol Eng Comput 48:1175–1190. https://doi.org/10.1007/s11517-010-0714-y

    Article  PubMed  Google Scholar 

  18. Assar AN, Zarins CK (2009) Ruptured abdominal aortic aneurysm: A surgical emergency with many clinical presentations. Postgrad Med J 85:268–273. https://doi.org/10.1136/pgmj.2008.074666

    Article  CAS  PubMed  Google Scholar 

  19. Van Damme H, Sakalihasan N, Limet R (2005) Factors promoting rupture of abdominal aortic aneurysms. Acta Chir Belg 105:1–11

    Article  PubMed  Google Scholar 

  20. Wolf YG, Thomas WS, Brennan FJ, Goff WG, Sise MJ, Berntein EF (1994) Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J Vasc Surg 20:529–538. https://doi.org/10.1016/0741-5214(94)90277-1

    Article  CAS  PubMed  Google Scholar 

  21. Blanchard JF (1999) Epidemiology of abdominal aortic aneurysms. Epidemiol Rev 21:207–221. https://doi.org/10.1093/oxfordjournals.epirev.a017997

    Article  CAS  PubMed  Google Scholar 

  22. Sternbergh WC, Carter G, York JW, Yoselevitz M, Money SR (2002) Aortic neck angulation predicts adverse outcome with endovascular abdominal aortic aneurysm repair. J Vasc Surg 35:482–486. https://doi.org/10.1067/mva.2002.119506

    Article  PubMed  Google Scholar 

  23. Gray RA, Pathmanathan P (2018) Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges. J Cardiovasc Transl Res 11:80–88. https://doi.org/10.1007/s12265-018-9792-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chaichana T, Sun Z, Jewkes J (2012) Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images. Australas Phys Eng Sci Med 35:231–236. https://doi.org/10.1007/s13246-012-0135-3

    Article  PubMed  Google Scholar 

  25. Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28. https://doi.org/10.1136/heartjnl-2015-308044

    Article  PubMed  Google Scholar 

  26. Chung B, Cebral JR (2014) CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann Biomed Eng 43:122–138. https://doi.org/10.1007/s10439-014-1093-6

    Article  PubMed  Google Scholar 

  27. Tseng FS, Soong TK, Syn N, Ong CW, liangb LH, Choongc AM (2017) Computational fluid dynamics in complex aortic surgery: applications, prospects and challenges. J Surg Simul 4:1–4. https://doi.org/10.1102/2051-7726.2017.0001

    Article  Google Scholar 

  28. van Bakel TMJ, Lau KD, Hirsch-Romano J, Trimarchi S, Dorfman AL, Figueroa CA (2018) Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction. J Cardiovasc Transl Res 11:145–155. https://doi.org/10.1007/s12265-017-9781-x

    Article  PubMed  Google Scholar 

  29. Prakobkarn A, Ina N, Saeheng S, Chatpun S (2017) Carotid artery stenosis pre-assessment by relationship derived from two-dimensional patient-specific model and throat velocity ratio. World J Model Simul 1:3–11

    Google Scholar 

  30. Carty G, Chatpun S, Espino DM (2016) Modeling Blood Flow Through Intracranial Aneurysms: A Comparison of Newtonian and Non-Newtonian Viscosity. J Med Biol Eng 36:396–409. https://doi.org/10.1007/s40846-016-0142-z

    Article  Google Scholar 

  31. Owen B, Lowe C, Ashton N, Mandal P, Rogers S, Wein W, McCollum C, Revell A (2016) Computational hemodynamics of abdominal aortic aneurysms: Three-dimensional ultrasound versus computed tomography. Proc Inst Mech Eng Part H J Eng Med 230:201–210. https://doi.org/10.1177/0954411915626742

    Article  Google Scholar 

  32. Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31:760–769. https://doi.org/10.1067/mva.2000.103971

    Article  CAS  PubMed  Google Scholar 

  33. del Álamo JC, Marsden AL, Lasherasa JC (2009) Recent Advances in the Application of Computational Mechanics to the Diagnosis and Treatment of Cardiovascular Disease. Rev Esp Cardiol 62:781–805. https://doi.org/10.1016/S1885-5857(09)72359-X

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter. J Vasc Surg 37:724–732. https://doi.org/10.1067/mva.2003.213

    Article  PubMed  Google Scholar 

  35. Di Martino ES, Vorp DA (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31:804–809. https://doi.org/10.1114/1.1581880

    Article  PubMed  Google Scholar 

  36. Raghavan ML, Fillinger MF, Marra SP, Naegelein BP, Kennedy FE (2005) Automated Methodology for Determination of Stress Distribution in Human Abdominal Aortic Aneurysm. J Biomech Eng 127:868–871. https://doi.org/10.1115/1.1992530

    Article  PubMed  Google Scholar 

  37. Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23:647–655. https://doi.org/10.1016/S1350-4533(01)00093-5

    Article  PubMed  Google Scholar 

  38. Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A (2010) Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J Bomechanical Eng 132:91005. https://doi.org/10.1115/1.4001886

    Article  Google Scholar 

  39. Gao F, Ohta O, Matsuzawa T (2008) Fluid-structure interaction in layered aortic arch aneurysm model: Assessing the combined influence of arch aneurysm and wall stiffness. Australas Phys Eng Sci Med 31:32–41. https://doi.org/10.1007/BF03178451

    Article  CAS  PubMed  Google Scholar 

  40. Scotti CM, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: A fluid-structure interaction study. Comput Struct 85:1097–1113. https://doi.org/10.1016/j.compstruc.2006.08.041

    Article  Google Scholar 

  41. Frauenfelder T, Lotfey M, Boehm T, Wildermuth S (2006) Computational fluid dynamics: Hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 29:613–623. https://doi.org/10.1007/s00270-005-0227-5

    Article  PubMed  Google Scholar 

  42. Kao RH, Chen WL, Leu TS, Chen T, Kan CD (2014) Numerical Simulation of Blood Flow in Double-Barreled Cannon EVAR and its Clinical Validation. J Vasc Med Surg 2:160. https://doi.org/10.4172/2329-6925.1000160

    Article  Google Scholar 

  43. Yeow SL, Leo HL (2016)Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm.Comput Math Methods Med 2016: 2016:3830123.https://doi.org/10.1155/2016/3830123

  44. Sheidaei A, Hunley SCC, Zeinali-Davarani S, Raguin LG, Baek S (2011) Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys 33:80–88. https://doi.org/10.1016/j.medengphy.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  45. Gur H, Ben, Brand M, Kósa G, Golan S (2017)Computational Fluid Dynamics of Blood Flow in the Abdominal Aorta Post “Chimney”Endovascular Aneurysm Repair (ChEVAR).In:Aortic Aneurysm.IntechOpen, pp 617–622

  46. Soudah E, Ng EYK, Loong TH, Bordone M, Pua U, Narayanan S (2013) CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med 2013. https://doi.org/10.1155/2013/472564

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D (2010) Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng 38:3323–3337. https://doi.org/10.1007/s10439-010-0094-3

    Article  PubMed  Google Scholar 

  48. Algabri YA, Rookkapan S, Chatpun S (2017) Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm. IOP Conf Ser Mater Sci Eng 243:12003. https://doi.org/10.1088/1757-899X/243/1/012003

    Article  Google Scholar 

  49. Finol EA, Keyhani K, Amon CH (2003) The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions. J Biomech Eng 125:207–217. https://doi.org/10.1115/1.1543991

    Article  CAS  PubMed  Google Scholar 

  50. Shek TLT, Tse LW, Nabovati A, Amon CH (2012) Computational Fluid Dynamics Evaluation of the Cross-Limb Stent Graft Configuration for Endovascular Aneurysm Repair. J Biomech Eng 134:121002. https://doi.org/10.1115/1.4007950

    Article  PubMed  Google Scholar 

  51. Boyd AJ, Kuhn DCS, Lozowy RJ, Kulbisky GP (2016) Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. J Vasc Surg 63:1613–1619. https://doi.org/10.1016/j.jvs.2015.01.040

    Article  PubMed  Google Scholar 

  52. Sinnott M, Cleary PW, Prakash M (2006)An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method.In:Proc.Fifth International Conference on CFD in the Process Industries.Melbourne, pp 1–6

  53. Gounley J, Vardhan M, Randles A (2017)A Computational Framework to Assess the Influence of Changes in Vascular Geometry on Blood Flow.In:Proceedings of the Platform for Advanced Scientific Computing Conference on -PASC’17.Lugano, pp 1–8

  54. Dolan JM, Kolega J, Meng H (2013) High wall shear stress and spatial gradients in vascular pathology: A review. Ann Biomed Eng 41:1411–1427. https://doi.org/10.1007/s10439-012-0695-0

    Article  PubMed  Google Scholar 

  55. Arzani A, Shadden SC (2015) Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow. J Biomech Eng 138:14503. https://doi.org/10.1115/1.4032056

    Article  Google Scholar 

  56. Tan FPP, Borghi A, Mohiaddin RH, Wood NB, Thom S, Xu XY (2009) Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput Struct 87:680–690. https://doi.org/10.1016/j.compstruc.2008.09.007

    Article  Google Scholar 

  57. Banks J, Bressloff NW (2007) Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations. J Biomech Eng 129:40–50. https://doi.org/10.1115/1.2401182

    Article  CAS  PubMed  Google Scholar 

  58. Ryval J, Straatman AG, Steinman DA (2004) Two-equation Turbulence Modeling of Pulsatile Flow in a Stenosed Tube. J Biomech Eng 126:625–635. https://doi.org/10.1115/1.1798055

    Article  CAS  PubMed  Google Scholar 

  59. Deplano V, Knapp Y, Bailly L, Bertrand E (2014) Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: Experimental modelling. J Biomech 47:1262–1269. https://doi.org/10.1016/j.jbiomech.2014.02.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Sumrit Ruangchan and the radiology department, faculty of medicine, Prince of Songkla University for assisting with and providing the patient CT images, data and clinical suggestions.

Funding

This study was funded by the Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC) scholarship given to the Mr. Yousif A. Algabri and the thesis support funding from the graduate school, Prince of Songkla University. This work was also supported by a Researcher Links grant, ID 2017-RLTG8-10538, under the Newton-TRF Fund partnership. The grant is funded by the UK Department for Business, Energy and Industrial Strategy and Thailand Research Fund (TRF) (PDG61W0013) and delivered by the British Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surapong Chatpun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Only images from patient-specific data were used in this study under the ethical approval acquired from Faculty of Medicine Ethics Committee, Prince of Songkla University under number REC.61-010-25-2.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The name of the third author was incorrect in the initial online publication. The original article has been corrected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1032 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algabri, Y.A., Rookkapan, S., Gramigna, V. et al. Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity. Australas Phys Eng Sci Med 42, 181–190 (2019). https://doi.org/10.1007/s13246-019-00728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00728-7

Keywords

Navigation