Evaluation of the Effect of Crosslinking Method of Poly(Vinyl Alcohol) Hydrogels on Thrombogenicity

Abstract

Purpose

Crosslinked poly(vinyl alcohol) (PVA) is a biomaterial that can be used for multiple cardiovascular applications. The success of implanted biomaterials is contingent on the properties of the material. A crucial consideration for blood-contacting devices is their potential to incite thrombus formation, which is dependent on the material surface properties. The goal of this study was to quantify the effect of different crosslinking methods of PVA hydrogels on in vitro thrombogenicity.

Methods

PVA was manufactured using three different crosslinking methods: 30% sodium trimetaphosphate (STMP), three 24 h freeze–thaw cycles (FT), and 2% glutaraldehyde-crosslinked (GA) to produce STMP-PVA, FT-PVA and GA-PVA, respectively. Expanded polytetrafluoroethylene (ePTFE) was used as a clinical control. As markers of thrombus formation, the degree of coagulation factor (F) XII activation, fibrin formation, and platelet adhesion were measured.

Results

The GA-PVA material increased FXII activation in the presence of cofactors compared to vehicle and increase platelet adhesion compared to other PVA surfaces. The STMP-PVA and FT-PVA materials had equivalent degrees of FXII activation, fibrin formation and platelet adhesion.

Conclusion

This work supports crosslinker dependent thrombogenicity of PVA hydrogels and advances our understanding of how the manufacturing of a PVA hydrogel affects its hemocompatibility.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Anderson, D. E. J., J. J. Glynn, H. K. Song, and M. T. Hinds. Engineering an endothelialized vascular graft: a rational approach to study design in a non-human primate model. PLoS ONE 9:e115163, 2014.

    Article  Google Scholar 

  2. 2.

    Anderson, D. E. J., K. P. Truong, M. W. Hagen, E. K. F. Yim, and M. T. Hinds. Biomimetic modification of poly(vinyl alcohol): encouraging endothelialization and preventing thrombosis with antiplatelet monotherapy. Acta Biomater. 86:291–299, 2019.

    Article  Google Scholar 

  3. 3.

    Chaouat, M., C. Le Visage, W. E. Baille, B. Escoubet, F. Chaubet, M. A. Mateescu, and D. Letourneur. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv. Funct. Mater. 18(19):285–2861, 2008.

    Article  Google Scholar 

  4. 4.

    Chatterjee, K., Z. Guo, E. A. Vogler, and C. A. Siedlecki. Contributions of contact activation pathways of coagulation factor XII in plasma. J. Biomed. Mater. Res. Part A. 90A:27–34, 2009.

    Article  Google Scholar 

  5. 5.

    Cholakis, M. V. Cynthia, zingg, walter, sefton, effect of heparin-PVA hydrogel on platelets in a chronic canine arterio-venous shunt. J. Biomed. Mater. Res. 23:417–441, 1989.

    Article  Google Scholar 

  6. 6.

    Cholakis, M. V. Cynthia, Sefton, In vitro platelet interactions with a heparin-polyvinyl alcohol hydrogel. J. Biomed. Mater. Res. 23:399–415, 1989.

    Article  Google Scholar 

  7. 7.

    Cutiongco, M. F. A., D. E. Anderson, M. T. Hinds, and E. K. Yim. In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts. Acta Biomater. 25:97–108, 2015.

    Article  Google Scholar 

  8. 8.

    Cutiongco, M. F. A., M. Kukumberg, J. L. Peneyra, M. S. Yeo, J. Y. Yao, A. J. Rufaihah, C. Le Visage, J. P. Ho, and E. K. F. Yim. Submillimeter diameter poly(vinyl alcohol) vascular graft patency in rabbit model. Front. Bioeng. Biotechnol. 4:44, 2016.

    Article  Google Scholar 

  9. 9.

    Doble, M., N. Makadia, S. Pavithran, and R. S. Kumar. Analysis of explanted ePTFE cardiovascular grafts (modified BT shunt). Biomed. Mater. 3:034118, 2008.

    Article  Google Scholar 

  10. 10.

    Gorbet, M., C. Sperling, M. F. Maitz, C. A. Siedlecki, C. Werner, and M. V. Sefton. The blood compatibility challenge. Part 3: material associated activation of blood cascades and cells. Acta Biomater. 94:25–32, 2019.

    Article  Google Scholar 

  11. 11.

    Hassan, C. M., and N. A. Peppas. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153:37–65, 2000.

    Article  Google Scholar 

  12. 12.

    Hassan, C. M., and N. A. Peppas. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 33:2472–2479, 2000.

    Article  Google Scholar 

  13. 13.

    Ino, J. M., E. Sju, V. Ollivier, E. K. F. Yim, D. Letourneur, and C. L. Visage. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. J. Biomed. Mater. Res. B 101:1549–1559, 2013.

    Article  Google Scholar 

  14. 14.

    Ivanov, I., A. Matafonov, M.-F. Sun, Q. Cheng, S. K. Dickeson, I. M. Verhamme, J. Emsley, and D. Gailani. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation 129:1527–1537, 2017.

    Google Scholar 

  15. 15.

    Jurney, P. L., D. E. J. Anderson, G. Pohan, E. K. F. Yim, and M. T. Hinds. Reactive ion plasma modification of poly(vinyl-alcohol) increases primary endothelial cell affinity and reduces thrombogenicity. Macromol. Biosci. 18:1800132, 2018.

    Article  Google Scholar 

  16. 16.

    Liu, Y., N. E. Vrana, P. A. Cahill, and G. B. McGuinness. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J. Biomed. Mater. Res. Part B 90B:492–502, 2009.

    Article  Google Scholar 

  17. 17.

    Llanos, M. V. Gerard, Sefton, Immobilization of ploy(ethylene glycol) onto a poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. J. Biomed. Mater. Res. 27:1383–1391, 1993.

    Article  Google Scholar 

  18. 18.

    McCarty, O. J. T., M. K. Larson, J. M. Auger, N. Kalia, B. T. Atkinson, A. C. Pearce, S. Ruf, R. B. Henderson, V. L. J. Tybulewicz, L. M. Machesky, and S. P. Watson. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J. Biol. Chem. 280:39474–39484, 2005.

    Article  Google Scholar 

  19. 19.

    Moscato, S., L. Mattii, D. D’Alessandro, M. G. Cascone, L. Lazzeri, L. P. Serino, A. Dolfi, and N. Bernardini. Interaction of human gingival fibroblasts with PVA/gelatine sponges. Micron. 39:569–579, 2008.

    Article  Google Scholar 

  20. 20.

    Pal, K., A. K. Banthia, and D. K. Majumdar. Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech. 8:E1–E5, 2007.

    Article  Google Scholar 

  21. 21.

    Peppas, N. A., and S. R. Stauffer. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J. Control. Release. 16:305–310, 1991.

    Article  Google Scholar 

  22. 22.

    Pramanick, A. K., S. Gupta, T. Mishra, and A. Sinha. Topographical heterogeneity in transparent PVA hydrogels studied by AFM. Mater. Sci. Eng. C. 32:222–227, 2012.

    Article  Google Scholar 

  23. 23.

    Puy, C., E. I. Tucker, Z. C. Wong, D. Gailani, S. A. Smith, S. H. Choi, J. H. Morrissey, A. Gruber, and O. J. T. Mccarty. Factor XII promotes blood coagulation independent of factor XI in the presence of long chain polyphosphate. J Thromb Haemost. 11:1341–1352, 2013.

    Article  Google Scholar 

  24. 24.

    Stavrou, E., and A. H. Schmaier. Factor XII: what does it contribute to our understanding of the physiology and pathophysiology of hemostasis & thrombosis. Thromb Res. 125:210–215, 2010.

    Article  Google Scholar 

  25. 25.

    Uchida, N., H. Emoto, H. Kambic, H. Harasaki, J.-F. Chen, S.-H. Hsu, S. Murabayashi, and Y. Nose. Compliance effect on patency of small diameter. Trans. Am. Soc. Artif. Intern. Organs. 35:556–558, 1989.

    Google Scholar 

  26. 26.

    Vaníčková, M., J. Suttnar, J. E. Dyr, M. Vanič, V. Vanič, K. Kova, K. Jiř, and I. Suttnar. The adhesion of blood platelets on fibrinogen surface: comparison of two biochemical microplate assays. Platelets. 17:470–476, 2006.

    Article  Google Scholar 

  27. 27.

    Walker, J., G. Young, C. Hunt, and T. Henderson. Multi-centre evaluation of two daily disposable contact lenses. Contact Lens Anterior Eye 30(2):125–133, 2007.

    Article  Google Scholar 

  28. 28.

    Wu, Y., C. Yu, M. Xing, L. Wang, and G. Guan. Surface modification of polyvinyl alcohol (PVA)/polyacrylamide (PAAm) hydrogels with polydopamine and REDV for improved applicability. J. Biomed. Mater. Res. 1:1–11, 2019.

    Google Scholar 

  29. 29.

    Yang, S.-H., Y.-S. J. Lee, F.-H. Lin, J.-M. Yang, and K. Chen. Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J. Biomed. Mater. Res. B 83B:304–313, 2007.

    Article  Google Scholar 

  30. 30.

    Yao, Y., A. M. Zaw, D. E. J. Anderson, M. T. Hinds, and E. K. F. Yim. Fucoidan functionalization on poly(vinyl alcohol) hydrogels for improved endothelialization and hemocompatibility. Biomaterials. 249:120011, 2020.

    Article  Google Scholar 

  31. 31.

    Zhuo, R., C. A. Siedlecki, and E. A. Vogler. Autoactivation of blood factor XII at hydrophilic and hydrophobic surfaces. Biomaterials. 27:4325–4332, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Achievement Rewards for College Scientists (ARCS) Foundation and the National Institutes of Health Grants R01HL130274 and R01HL144113.

Funding

Dr. Owen JT McCarty received research Grant Number R01HL144113 from the National Institutes of Health. Dr. Monica T Hinds received research Grant Numbers R01HL130274 and R01HL144113 from the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Novella M. Bates.

Ethics declarations

Conflict of interest

Novella M Bates, Dr. Cristina Puy, and Dr. Patrick L Jurney declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Craig Alexander Simmons oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bates, N.M., Puy, C., Jurney, P.L. et al. Evaluation of the Effect of Crosslinking Method of Poly(Vinyl Alcohol) Hydrogels on Thrombogenicity. Cardiovasc Eng Tech (2020). https://doi.org/10.1007/s13239-020-00474-y

Download citation

Keywords

  • Poly(vinyl alcohol)
  • Crosslinking
  • Hydrogel
  • Vascular graft
  • Thrombogenicity